86 resultados para Experiential aspects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an overview of seismic microzonation and existing methodologies with a newly proposed methodology covering all aspects. Earlier seismic microzonation methods focused on parameters that affect the structure or foundation related problems. But seismic microzonation has generally been recognized as an important component of urban planning and disaster management. So seismic microzonation should evaluate all possible hazards due to earthquake and represent the same by spatial distribution. This paper presents a new methodology for seismic microzonation which has been generated based on location of study area and possible associated hazards. This new method consists of seven important steps with defined output for each step and these steps are linked with each other. Addressing one step and respective result may not be seismic microzonation, which is practiced widely. This paper also presents importance of geotechnical aspects in seismic microzonation and how geotechnical aspects affect the final map. For the case study, seismic hazard values at rock level are estimated considering the seismotectonic parameters of the region using deterministic and probabilistic seismic hazard analysis. Surface level hazard values are estimated considering site specific study and local site effects based on site classification/characterization. The liquefaction hazard is estimated using standard penetration test data. These hazard parameters are integrated in Geographical Information System (GIS) using Analytic Hierarchy Process (AHP) and used to estimate hazard index. Hazard index is arrived by following a multi-criteria evaluation technique - AHP, in which each theme and features have been assigned weights and then ranked respectively according to a consensus opinion about their relative significance to the seismic hazard. The hazard values are integrated through spatial union to obtain the deterministic microzonation map and probabilistic microzonation map for a specific return period. Seismological parameters are widely used for microzonation rather than geotechnical parameters. But studies show that the hazard index values are based on site specific geotechnical parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanidine derived six-membered C,N] palladacycles of the types (C,N)Pd(mu-OC(O)R)](2) (1a-d), (C,N)Pd(mu-Br)](2) (2a,b), cis-(C,N)PdBr(L)] (3a-d, 4, and 5), and ring contracted guanidine derived five-membered C,N] palladacycle, (C,N)PdBr(C NXy)] (6) were prepared in high yield following the established methods with a view aimed at understanding the influence of the substituents on the aryl rings of the guanidine upon the solid state structure and solution behaviour of palladacycles. Palladacycles were characterised by microanalytical, IR, NMR and mass spectral data. The molecular structures of 1a, 1c, 2a, 2b, 3a, 3c, 3d, and 4-6 were determined by single crystal X-ray diffraction data. Palladacycles 1a and 1c were shown to exist as a dimer in transoid in-in conformation in the solid state but as a mixture of a dimer in major proportion and a monomer (kappa(2)-O,O'-OAc) in solution as deduced from H-1 NMR data. Palladacycles 2a and 2b were shown to exist as a dimer in transoid conformation in the solid state but the former was shown to exist as a mixture of a dimer and presumably a trimer in solution as revealed by a variable temperature H-1 NMR data in conjunction with ESI-MS data. The cis configuration around the palladium atom in 3a, 3c, and 3d was ascribed to steric influence of the aryl moiety of =NAr unit and that in 4-6 was ascribed to antisymbiosis. The solution behaviour of 3d was studied by a variable concentration (VC) H-1 NMR data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six-membered C,N] cyclopalladated sym N,N',N `'-tri(4-tolyl)guanidines, (ArNH)(2)C=NAr] (sym = symmetrical; Ar = 4-MeC6H4; LH24-tolyl) of the types (C,N)Pd(mu-OC(O)R)](2) (1 and 2), (C,N)Pd(mu-Br)](2) (3), cis-(C,N)PdLBr] (4-7), and (C,N)Pd(acac)] (8) were prepared in high yield by established methods with a view aimed at understanding the influence of the 4-tolyl substituent of the guanidine moiety upon the solution behaviour of 1-8. The composition of 1-8 was confirmed by elemental analysis, IR, and NMR spectroscopy, and mass spectrometry. The molecular structures of 1-6 were determined by single-crystal X-ray diffraction. Palladacycles 1-3 exist as a dimer in transoid conformation in the solid state while 4-6 exist as a monomer with cis configuration around the palladium atom as the Lewis base is placed cis to the Pd-C bond due to antisymbiosis. The NMR spectra of 1-8 revealed the presence of a single isomer in solution and this spectral feature is ascribed to the rapid inversion of the six-membered ``C,N]Pd'' ring due to the presence of sterically less hindered and more symmetrical 4-tolyl substituent in the =NAr unit of the guanidine moiety. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years new emphasis has been placed on problems of the environmental aspects of waste disposal, especially investigating alternatives to landfill, sea dumping and incineration. There is also a strong emphasis on clean, economic and efficient processes for electric power generation. These two topics may at first appear unrelated. Nevertheless, the technological advances are now such that a solution to both can be combined in a novel approach to power generation based on waste-derived fuels, including refuse-derived fuel (RDF) and sludge power (SP) by utilising a slagging gasifier and advance fuel technology (AFT). The most appropriate gasification technique for such waste utilisation is the British Gas/Lurgi (BGL) high pressure, fixed bed slagging gasifier where operation on a range of feedstocks has been well-documented. This gasifier is particularly amenable to briquette fuel feeding and, operating in an integrated gasification combined cycle mode (IGCC), is particularly advantageous. Here, the author details how this technology has been applied to Britain's first AFT-IGCC Power Station which is now under development at Fife Energy Ltd., in Scotland, the former British Gas Westfield Development Centre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand Cr emissions from slag melts to a vapor phase, an assessment of the stabilities of the chromium oxides at high temperatures has been carried out. The objective of the present study is to present a set of consistent data corresponding to the thermodynamic properties of the oxides of chromium, with special reference to the emission of hexavalent chromium from slags. In the current work, critical analysis of the experimental data available and a third analysis in the case of Cr2O3 have been carried out. Commercial databases, Fact Sage and ThermoCalc along with NIST-JANAF Thermochemical Tables, have been used for the analysis and comparisons of the results that are presented. The significant discrepancies in the available data have been pointed out. The data from NIST-JANAF Thermochemical Tables have been found to provide a set of consistent data for the various chromium oxides. An Ellingham diagram and the equations for the Delta G degrees (standard Gibbs free energy change) of formation of CrOx have been proposed. The present analysis shows that CrO3(g) is likely to be emitted from slag melts at high oxygen partial pressures. (C) The Minerals, Metals & Materials Society and ASM International 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the progress of modern material science and successful commercialisations of organic-electronics, the field of organic luminescent materials has gained much attention in recent years. For a long time, the concepts and knowledge of photoluminescence (i.e. fluorescence and phosphorescence) were restricted to the solution phase as the exceptions of fluorescence quenching in condensed state were yet to be discovered. However, in the last few decades, researchers around the globe have come up with a number of promising strategies and concepts to systematically design solid-state emissive organic materials. In particular, the manipulations of ordered solid state structures and intermolecular strong and weak interactions provide a basis for understanding structure-property relationship and serve as an important tool for the design of newer, better and more efficient luminescent materials. In this short review, recent developments in this field will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depalladation of the monoalkyne-inserted cyclopalldated guanidines (kappa 2(C,N)Pd(2,6-Me2C5H3N)Br] (I and II) in PhCl under reflux conditions and that of the dialkyne-inserted cyclopalladated guanidine kappa(2)(C,N):eta(2)(C=C)PdBr] (III) in pyridine under reflux conditions afforded a guanidine-containing indole (1), imidaziondole (2), and benzazepine (3) in 80%, 67%, and 76%, yields, respectively. trans-L2PdBr2] species (L = 2,6-Me2C5H3N, C5H5N) were also isolated in the aforementioned reactions in 35%, 42%, and 40% yields. Further , the reaction of the cyclopalladated guanidine kappa(2)(C,N)Pd(mu-Br)](2) (IV) with AgBF4 in a CH2Cl2/MeCN mixture afforded the cationic pincer type cyclopalladated guanidine kappa(3)(C,N,O)Pd(MeCN)]BF4] (4) in 85% yield and this palladacycle upon crystallization in MeCN and the reaction of kappa(2)(C,N)Pd(mu-Br)](2) (V) with AgBf(4) in a CH2Cl2/MeCN mixture afforded the cationic palladacycles {kappa(2)(C,N)Pd(MeCN)(2)]BF4](5 and 6) in 89% and 91% yields, respectively. The separate reactions of 4 with 2 equiv of methyl phenylpropiolate (MPP) or diphenylacetylene (DPA) and the reaction of 5 with 2 equiv of MPP in PhCl at 110 degrees C afforded the guanidine-containing quinazolinium tetrafluoroborate 7 in 25-32% yields. The reaction of 6 with 2 equiv of DPA under otherwise identical conditions afforded the unsymmetrically substituted guanidinium tetrafluoroborate 8, containing a highly substituted naphthalene unit, in 82% yield. Compounds 1-8 were characterized by analytical and spectroscopic techniques, and all compounds except 4 were characterized by single-crystal X-ray diffraction. The Molecular structure of 2 and 3 are nove, as the framework in the former arises due to the formation of two C-N bonds upon depalladation while the butadienyl unit in the latter revealed cis,cis stereochemistry, a-feature unprecedented in alkyne insertion chemistry. Plausible pathways for the formation of heterocycles/carbocycles are proposed. the influence of substitutents on the aryl rings fo the cyclopalladated guanidine moiety and those on alkynes upon the nature of the products in addressed. Heterocycles 1 and 7 revealed the presence of two rotamers in about a 1.00:0.43 ratio in CDCl3 and in about a 1.00:0.14 ratio in CD3OD, respectively, as detected by H-1 NMR spectroscopy while in CD3CN and DMSO-d(6) (1) and CD3CN and CDCl3 (7), these heterocycles revealed the presence of a single rotamer. These spectral features are attributed to the restricted C-N single-bond rotation of the CN3 unit of the guanidine moiety, which possibly arises from steric constraint due to the formation of a N-H center dot center dot center dot Cl hydrogen bond with CDCl3 (1) and N-H center dot center dot center dot O and O-D center dot center dot center dot O hydrogen bonds with CD3OD (7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key aspects of Organic Photovoltaics (OPVs) have been reviewed in this tutorial. Issues pertaining to the choice of materials, fabrication processes, photophysical mechanisms, device characterization, morphology of active layers and manufacturing are discussed. Special emphasis has been given to recent developments in large-area modules. Current strategies in enhancing the performance using external optical engineering approaches have also been highlighted. OPVs as a technology combine low weight, flexibility, low cost, good form factor and high-throughput processing; making them a promising PV technology for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been 20 years since the concept of supramolecular synthon was introduced with the purpose of rational supramolecular synthesis. While this concept has been greatly successful in employing a retrosynthetic approach in crystal engineering, the past few years have seen a continuous evolution of supramolecular synthons from being a synthetic subunit to a basic unit for understanding the dynamics of crystallization. This review attempts to give a glimpse of such developments.