196 resultados para Euclidean sphere
Resumo:
The present paper investigates the nature of the fluid flow when a spheroid is suspended in an infinitely extending elastico-viscous fluid defined by the constitutive equations given by Oldroyd or Rivlin and Ericksen, and is made to perform small amplitude oscillations along its axis. The solution of the vector wave equation is expressed in terms of the solution of the corresponding scalar wave equation, without the use of Heine's function or spheroidal wave functions. Two special cases (i) a sphere and (ii) a spheroid of small ellipticity, are studied in detail.
Resumo:
The rare-earth trichloroacetates having the formula Ln(Cl3CCOO)3. 3H2O, where Ln = La, Pr, Nd, Sm, Gd or Y, were investigated by conductimetric, cryoscopic and infrared methods. The results suggest a structure in which the acetate anion coordinates to the metal through both the oxygen and the water molecules remain outside the coordination sphere.
Resumo:
The paper deals with the study of the nature of secondary flow of aRivlin-Ericksen fluid, contained between two concentric spheres, which perform oscillations about a fixed diameter. The steady part of the secondary flow is discussed in detail in the following three cases (i) the outer sphere at rest, the inner oscillating, (ii) the two spheres oscillating with the same angular velocity in the same sense and (iii) the spheres oscillating with the same angular velocity in opposite sense. In a previous paper, a similar problem was discussed for theOldroyd fluids. We find that the secondary flow is strongly dependent on the common frequency of oscillation of the two spheres and on the rotational nature of the motion for the present investigation also. Certain contrasting features of interest between the secondary flow field of the two fluids are also noted.
Resumo:
The oxalato complexes, VOC2O4·2H2O and VOC2O4·4H2O, are described. Their magnetic moments correspond to one unpaired electron showing the tetravalency of vanadium. They are monomeric in aqueous solution. Thermal studies suggest VO2 formation when the compounds are decomposed. Infrared spectra reveal covalent bonding between the vanadium and the oxalate group and the coordinated water. The tetrahydrate has also some lattice held water. The weak band at 780 mμ and a shoulder at 600 mμ are due to d ↔ d transitions and the absorption in the ultra violet is due to charge transfer within the VO2+ group. The dihydrate is assigned a stable five co-ordinated pyramidal structure; while the tetrahydrate, a distorted octahedron with one water molecule loosely bound along the V---O axis and the other outside the co-ordination sphere.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.
Resumo:
We derive the heat kernel for arbitrary tensor fields on S-3 and (Euclidean) AdS(3) using a group theoretic approach. We use these results to also obtain the heat kernel on certain quotients of these spaces. In particular, we give a simple, explicit expression for the one loop determinant for a field of arbitrary spin s in thermal AdS(3). We apply this to the calculation of the one loop partition function of N = 1 supergravity on AdS(3). We find that the answer factorizes into left- and right-moving super Virasoro characters built on the SL(2, C) invariant vacuum, as argued by Maloney and Witten on general grounds.
Resumo:
For structured-light scanners, the projective geometry between a projector-camera pair is identical to that of a camera-camera pair. Consequently, in conjunction with calibration, a variety of geometric relations are available for three-dimensional Euclidean reconstruction. In this paper, we use projector-camera epipolar properties and the projective invariance of the cross-ratio to solve for 3D geometry. A key contribution of our approach is the use of homographies induced by reference planes, along with a calibrated camera, resulting in a simple parametric representation for projector and system calibration. Compared to existing solutions that require an elaborate calibration process, our method is simple while ensuring geometric consistency. Our formulation using the invariance of the cross-ratio is also extensible to multiple estimates of 3D geometry that can be analysed in a statistical sense. The performance of our system is demonstrated on some cultural artifacts and geometric surfaces.
Resumo:
The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Resumo:
Hamilton’s theory of turns for the group SU(2) is exploited to develop a new geometrical representation for polarization optics. While pure polarization states are represented by points on the Poincaré sphere, linear intensity preserving optical systems are represented by great circle arcs on another sphere. Composition of systems, and their action on polarization states, are both reduced to geometrical operations. Several synthesis problems, especially in relation to the Pancharatnam-Berry-Aharonov-Anandan geometrical phase, are clarified with the new representation. The general relation between the geometrical phase, and the solid angle on the Poincaré sphere, is established.
Resumo:
An experimental study for transient temperature response and pressure drop in a randomly packed bed at high Reynolds numbers is presented.The packed bed is used as a compact heat exchanger along with a solid-propellant gas generator, to generate room-temperature gases for use in control actuation, air bottle pressurization, etc. Packed beds of lengths 200 and 300 mm were characterized for packing-sphere-based Reynolds numbers ranging from 0.8 x 10(4) to 8.5 x 10(4).The solid packing used in the bed consisted of phi 9.5 mm steel spheres. The bed-to-particle diameter ratio was with the average packed-bed porosity around 0.43. The inlet flow temperature was unsteady and a mesh of spheres was used at either end to eliminate flow entrance and exit effects. Gas temperature and pressure were measured at the entry, exit,and at three axial locations along centerline in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. A correlation based on the ratio of pressure drop and inlet-flow momentum (Euler number) exhibited an asymptotically decreasing trend with increasing Reynolds number. Axial conduction across the packed bed was found to he negligible in the investigated Reynolds number range. The enthalpy absorption rate to solid packing from hot gases is plotted as a function of a nondimensional time constant for different Reynolds numbers. A longer packed bed had high enthalpy absorption rate at Reynolds number similar to 10(4), which decreased at Reynolds number similar to 10(5). The enthalpy absorption plots can be used for estimating enthalpy drop across packed bed with different material, but for a geometrically similar packing.
Resumo:
It is well known that n-length stabilizer quantum error correcting codes (QECCs) can be obtained via n-length classical error correction codes (CECCs) over GF(4), that are additive and self-orthogonal with respect to the trace Hermitian inner product. But, most of the CECCs have been studied with respect to the Euclidean inner product. In this paper, it is shown that n-length stabilizer QECCs can be constructed via 371 length linear CECCs over GF(2) that are self-orthogonal with respect to the Euclidean inner product. This facilitates usage of the widely studied self-orthogonal CECCs to construct stabilizer QECCs. Moreover, classical, binary, self-orthogonal cyclic codes have been used to obtain stabilizer QECCs with guaranteed quantum error correcting capability. This is facilitated by the fact that (i) self-orthogonal, binary cyclic codes are easily identified using transform approach and (ii) for such codes lower bounds on the minimum Hamming distance are known. Several explicit codes are constructed including two pure MDS QECCs.
Resumo:
Constellation Constrained (CC) capacity regions of a two-user Gaussian Multiple Access Channel(GMAC) have been recently reported. For such a channel, code pairs based on trellis coded modulation are proposed in this paper with MPSK and M-PAM alphabet pairs, for arbitrary values of M,toachieve sum rates close to the CC sum capacity of the GMAC. In particular, the structure of the sum alphabets of M-PSK and M-PAMmalphabet pairs are exploited to prove that, for certain angles of rotation between the alphabets, Ungerboeck labelling on the trellis of each user maximizes the guaranteed squared Euclidean distance of the sum trellis. Hence, such a labelling scheme can be used systematically,to construct trellis code pairs to achieve sum rates close to the CC sum capacity. More importantly, it is shown for the first time that ML decoding complexity at the destination is significantly reduced when M-PAM alphabet pairs are employed with almost no loss in the sum capacity.
Resumo:
Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2 pi rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.