90 resultados para Estrogen Receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current treatment for glioblastoma includes temozolomide (TMZ) chemotherapy, yet the mechanism of action of TMZ is not thoroughly understood. Here, we investigated the TMZ-induced changes in the proteome of the glioma-derived cell line (U251) by 2D DIGE. We found 95 protein spots to be significantly altered in their expression after TMZ treatment. MS identified four upregulated spots: aspartyl tRNA synthetase glutathione synthetase, interleukin-1 receptor-associated kinase-4 (IRAK4), and breast carcinoma amplified sequence-1 and one downregulated spot: optineurin. TMZ-induced regulation of these five genes was validated by RT-qPCR andWestern blot analysis. RNAi-mediated knockdown of IRAK4, an important mediator of Toll-like receptors signaling and chemoresistance, rendered the glioma cells resistant to TMZ. High levels of IRAK4 induced upon TMZ treatment resulted in IRAK1 downregulation and inhibition of NFkB pathway. Endogenous IRAK4 protein, but not transcript levels in glioma cell lines, correlated with TMZ sensitivity. Thus, we have identified several TMZ-modulated proteins and discovered an important novel role for IRAK4 in determining TMZ sensitivity of glioma cells through its ability to inhibit Toll-like receptor signaling and NFkB pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and optical properties of four new triarylborane-dipyrromethane (TAB-DPM) conjugates (3a-d) containing dual binding sites (hydrogen bond donor and Lewis acid) have been reported. The new compounds exhibit a selective fluorogenic response towards the F-ion. The NMR titrations show that the anions bind to the TAB-DPM conjugates via the Lewis acidic triarylborane centre in preference to the hydrogen bond donor (dipyrromethane) units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new colorimetric sensor L containing nitro-substituted indole and bisthiocarbonohydrazone units for selective fluoride and acetate ions is designed and synthesized. The receptor L shows well-defined color change in the visible region of the spectrum with an absorption band at similar to 515 nm and 506 nm, respectively, for the F- and CH3COO- ions in an acetonitrile solution. Job's plots indicated the formation of 1 : 1 (L with CH3COO-) and 1 : 2 (L with F-) complexes. The interaction of L with the F- ion undergoes a deprotonation process and release of HX2](-), whereas with the CH3COO- ion, it forms a stable LH2(...)X](-) complex. The relative affinities of the anions with L are rationalized using computational studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha v beta 3 and alpha v beta 5 integrins, transmembrane glycoprotein receptors, are over-expressed in numerous tumors and in endothelial cells that constitute tumor blood vessels. As this protein selectively binds to the Arg-Gly-Asp (RGD) sequence containing peptides, it is an attractive way to target tumors. Herein we have developed novel formulations for integrin mediated selective gene delivery. These formulations are composed of a novel palmitoylated tetrameric RGD containing scaffold (named RAFT-RGD), cationic gemini cholesterol (GL5) and a natural helper lipid 1,2-dioleoyl-L-alpha-glycero-3-phosphatidylethanolamine (DOPE). We have optimized a co-liposomal formulation to introduce the multivalent RGD-containing macromolecule in GL5: DOPE (GL5D) mixture to produce GL5D-RGD. We have unambiguously shown the selectivity of these formulations towards cancer cells that over express alpha v beta 3 and alpha v beta 5 integrins. Two reporter plasmids, pEGFP-C3 and PGL-3, were employed for the transfection experiments and it was shown that GL5D-RGD Liposomes increased exclusively the transfection in alpha v beta 3 and alpha v beta 5 overexpressing HeLa cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRPMt) at endogenous expression levels using a specific alpha-CRPMt antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRPMt binding overlapped a palindromic consensus sequence. Analysis by RNA sequencing revealed widespread changes in transcriptional profile in a mutant strain lacking CRPMt during exponential growth, and in response to nutrient starvation. Differential expression of genes with a CRPMt-binding site represented only a minor portion of this transcriptional reprogramming with similar to 19% of those representing transcriptional regulators potentially controlled by CRPMt. The subset of genes that are differentially expressed in the deletion mutant under both culture conditions conformed to a pattern resembling canonical CRP regulation in Escherichia coli, with binding close to the transcriptional start site associated with repression and upstream binding with activation. CRPMt can function as a classical transcription factor in M. tuberculosis, though this occurs at only a subset of CRPMt-binding sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages regulate cell fate decisions during microbial challenges by carefully titrating signaling events activated by innate receptors such as dectin-1 or Toll-like receptors (TLRs). Here, we demonstrate that dectin-1 activation robustly dampens TLR-induced proinflammatory signature in macrophages. Dectin-1 induced the stabilization of beta-catenin via spleen tyrosine kinase (Syk)-reactive oxygen species (ROS) signals, contributing to the expression of WNT5A. Subsequently, WNT5A-responsive protein inhibitors of activated STAT (PIAS-1) and suppressor of cytokine signaling 1 (SOCS-1) mediate the downregulation of IRAK-1, IRAK-4, and MyD88, resulting in decreased expression of interleukin 12 (IL-12), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha). In vivo activation of dectin-1 with pathogenic fungi or ligand resulted in an increased bacterial burden of Mycobacteria, Klebsiella, Staphylococcus, or Escherichia, with a concomitant decrease in TLR-triggered proinflammatory cytokines. All together, our study establishes a new role for dectin-1-responsive inhibitory mechanisms employed by virulent fungi to limit the proinflammatory environment of the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new cell permeable quinazoline based receptor (1) selectively senses HSO4- ions of nanomolar region in 0.1 M HEPES buffer (ethanol-water: 1/5, v/v) at biological pH over other competitive ions through the proton transfer followed by hydrogen bond formation and subsequent anion coordination to yield the LHSO4]-LH+center dot 3H(2)O (2) ensemble, which has been crystallographically characterised to ensure the structure property relationship. This non-cytotoxic HSO4- ion selective biomarker has great potential to recognize the intercellular distribution of HSO4- ions in HeLa cells under fluorescence microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclic AMP receptor protein (CRP) family of transcription factors consists of global regulators of bacterial gene expression. Here, we identify two paralogous CRPs in the genome of Mycobacterium smegmatis that have 78% identical sequences and characterize them biochemically and functionally. The two proteins (MSMEG_0539 and MSMEG_6189) show differences in cAMP binding affinity, trypsin sensitivity, and binding to a CRP site that we have identified upstream of the msmeg_3781 gene. MSMEG_6189 binds to the CRP site readily in the absence of cAMP, while MSMEG_0539 binds in the presence of cAMP, albeit weakly. msmeg_6189 appears to be an essential gene, while the ?msmeg_0539 strain was readily obtained. Using promoter-reporter constructs, we show that msmeg_3781 is regulated by CRP binding, and its transcription is repressed by MSMEG_6189. Our results are the first to characterize two paralogous and functional CRPs in a single bacterial genome. This gene duplication event has subsequently led to the evolution of two proteins whose biochemical differences translate to differential gene regulation, thus catering to the specific needs of the organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein therapeutics targeting inflammatory mediators have shown great promise for the treatment of autoimmunities such as rheumatoid arthritis (RA). However, a significant challenge in this area has been their low in vivo stability and consequently their severely compromised therapeutic efficacy. One such therapeutic molecule IL-1 receptor antagonist (IL-1ra), used in the treatment of rheumatoid arthritis, has displayed only modest efficacy in human clinical trials owing to its short biological half-life. Herein, we report a novel approach to conglomerate individual protein entities into a drug depot by incorporation of an amyloidogenic motif Lys-Phe-Phe-Glu (KFFE) thereby dramatically improving their systemic persistence and in turn their therapeutic efficacy in a mice model of autoimmune arthritis. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by observations of non-exponential decay times in the stochastic binding and release of ligand-receptor systems, exemplified by the work of Rogers et al on optically trapped DNA-coated colloids (Rogers et al 2013 Soft Matter 9 6412), we explore the general problem of polymer-mediated surface adhesion using a simplified model of the phenomenon in which a single polymer molecule, fixed at one end, binds through a ligand at its opposite end to a flat surface a fixed distance L away and uniformly covered with receptor sites. Working within the Wilemski-Fixman approximation to diffusion-controlled reactions, we show that for a flexible Gaussian chain, the predicted distribution of times f(t) for which the ligand and receptor are bound is given, for times much shorter than the longest relaxation time of the polymer, by a power law of the form t(-1/4). We also show when the effects of chain stiffness are incorporated into this model (approximately), the structure of f(t) is altered to t(-1/2). These results broadly mirror the experimental trends in the work cited above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The serotonin(1A) receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin(1A) receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3s, to analyze the effect of cholesterol on the structure and dynamics of the serotonin(1A) receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin(1A) receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.