383 resultados para Electric transport
Resumo:
A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980-1981 to 2003-2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, N-x, N2O, SO2, PM and HC) using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg Of CO2, of which 94.5% was contributed by road transport (2003-2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) Of CO2, followed by Tamil Nadu 26.41 Tg(10.8%), Gujarat 23.31 Tg(9.6%), Uttar Pradesh 17.42 Tg(7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
Magnetotransport measurements in pulsed fields up to 15 T have been performed on mercury cadmium telluride (Hg1-xCdxTe, x similar to 0.2) bulk as well as liquid phase epitaxially grown samples to obtain the resistivity and conductivity tensors in the temperature range 220-300 K. Mobilities and densities of various carriers participating in conduction have been extracted using both conventional multicarrier fitting (MCF) and mobility spectrum analysis. The fits to experimental data, particularly at the highest magnetic fields, were substantially improved when MCF is applied to minimize errors simultaneously on both resistivity and conductivity tensors. The semiclassical Boltzmann transport equation has been solved without using adjustable parameters by incorporating the following scattering mechanisms to fit the mobility: ionized impurity, polar and nonpolar optical phonons, acoustic deformation potential, and alloy disorder. Compared to previous estimates based on the relaxation time approximation with outscattering only, polar optical scattering and ionized impurity scattering limited mobilities are shown to be larger due to the correct incorporation of the inscattering term taking into account the overlap integrals in the valence band.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
The crucial role of oxide surface chemical composition on ion transport in "soggy sand" electrolytes is discussed in a systematic manner. A prototype soggy sand electrolytic system comprising aerosil silica functionalized with various hydrophilic and hydrophobic moieties dispersed in lithium perchlorate-ethylene glycol solution was used for the study. Detailed rheology studies show that the attractive particle network in the case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity, as well as rendering the composite with beneficial elastic mechanical properties: Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. The percolation in ionic conductivity is, however, dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol), and as a result, no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol, contrary to gels obtained in the case of unmodified aerosil, and partially substituted with hydrophobic groups.
Resumo:
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, pointlike impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potentials. In the regime of small bias and low pumping frequency, both the dc and ac components of the current have power-law dependences on the bias and pumping frequencies with an exponent 2K-1 for spinless electrons, where K is the interaction parameter. For K < 1/2, the current grows large for special values of the bias. For noninteracting electrons with K=1, our results agree with those obtained using Floquet scattering theory for Dirac fermions. We also discuss the cases of extended impurities and of spin-1/2 electrons.
Resumo:
A method for determining the electron/hole transport length scale of model semiconducting polymer systems by scanning a narrow-light probe beam over the nonoverlapping anode/cathode region in asymmetric sandwich device structures is presented (see figure). Electron versus hole collection efficacy, and disorder and spatial anisotropy in the electrical transport parameters can be estimated.
Resumo:
BACKGROUND: Particle-based agglutination tests consisting of receptors grafted to colloidal microparticles are useful for detecting small quantities of corresponding ligands of interest in fluid test samples, but detection limits of such tests are limited to a certain concentration and it is most desirable to lower the detection limits and to enhance the rate of recognition of ligands. METHODS: A mixture of receptor-coated colloidal microparticles and corresponding ligand was sandwiched between 2 indium tin oxide-coated glass plates. Electrohydrodynamic drag from an alternating-current electric field applied perpendicular to the plates increased the local concentration of the colloidal particles, improving the chances of ligand-receptor interaction and leading to the aggregation of the colloidal particles. RESULTS: With this technique the sensitivity of the ligand-receptor recognition was increased by a factor as large as 50. CONCLUSIONS: This method can improve the sensitivity of particle-based agglutination tests used in immuno-assays and many other applications such as immunoprecipitation and chemical, sniffing. (C) 2007 American Association for Clinical Chemistry.
Resumo:
We show from conventional magnetization measurements that the charge order (CO) is completely suppressed in 10 nm Pr0.5Ca0.5MnO3 (PCMO 10) nanoparticles. Novel magnetization measurements, designed by a special high field measurement protocol, show that the dominant ground state magnetic phase is ferromagnetic-metallic (FM-M), which is an equilibrium phase, which coexists with the residual charge ordered anti-ferromagnetic phase (CO AFM) (an arrested phase) and exhibits the characteristic features of a `magnetic glassy state' at low temperatures. It is observed that there is a drastic reduction in the field required to induce the AFM to FM transition (similar to 5-6 T) compared to their bulk counterpart(similar to 27 T); this phase transition is of first order in nature, broad, irreversible and the coexisting phases are tunable with the cooling field. Temperature-dependent magneto-transport data indicate the occurrence of a size-induced insulator-metal transition (TM-I) and anomalous resistive hysteresis (R-H) loops, pointing out the presence of a mixture of the FM-M phase and AFM-I phase.
Resumo:
Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation-based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1-D problems.
Resumo:
We have studied magneto-transport and optical properties of Ga1-xMnxSb crystals (x = 0.01, 0.02, 0.03 and 0.04) grown by horizontal Bridgman method. Negative magnetoresistance and anomalous Hall effect have been observed below 10K. Temperature dependence of magnetization measurement shows a magnetic ordering below 10K which could arise from Ga1-xMnxSb alloy formation. Also, saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters. Reduction in band gap is observed with increasing Mn concentration in the crystals. Temperature dependence of band gap follows Bose-Einstein's model.
Resumo:
Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.
Resumo:
Carbon nanofibers of 50–500 nm diameter and several micrometer length were synthesized by high-temperature pyrolysis of dihydro-2,5-furandione (C4H4O3) in the temperature range of 600–980 °C. The formation of both graphitic and non-graphitic structured carbon fibers was observed in high-resolution transmission electron microscope. The Raman spectra of the samples showed the presence of both the D and G bands of varying intensity and sharpness. The low-temperature electrical transport studies on the samples have shown interesting metal–insulator transitions. The films showed variable range hopping conduction in the insulating regime and power law behavior in the critical regime at low temperatures.
Resumo:
In the present work, a numerical study is performed to predict the effect of process parameters on transport phenomena during solidification of aluminium alloy A356 in the presence of electromagnetic stirring. A set of single-phase governing equations of mass, momentum, energy and species conservation is used to represent the solidification process and the associated fluid flow, heat and mass transfer. In the model, the electromagnetic forces are incorporated using an analytical solution of Maxwell equation in the momentum conservation equations and the slurry rheology during solidification is represented using an experimentally determined variable viscosity function. Finally, the set of governing equations is solved for various process conditions using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. In present work, the effect of stirring intensity and cooling rate are considered. It is found that increasing stirring intensity results in increase of slurry velocity and corresponding increase in the fraction of solid in the slurry. In addition, the increasing stirring intensity results uniform distribution of species and fraction of solid in the slurry. It is also found from the simulation that the distribution of solid fraction and species is dependent on cooling rate conditions. At low cooling rate, the fragmentation of dendrites from the solid/liquid interface is more.