332 resultados para Electric networks.
Resumo:
An ad hoc network is composed of mobile nodes without any infrastructure. Recent trends in applications of mobile ad hoc networks rely on increased group oriented services. Hence multicast support is critical for ad hoc networks. We also need to provide service differentiation schemes for different group of users. An efficient application layer multicast (APPMULTICAST) solution suitable for low mobility applications in MANET environment has been proposed in [10]. In this paper, we present an improved application layer multicast solution suitable for medium mobility applications in MANET environment. We define multicast groups with low priority and high priority and incorporate a two level service differentiation scheme. We use network layer support to build the overlay topology closer to the actual network topology. We try to maximize Packet Delivery Ratio. Through simulations we show that the control overhead for our algorithm is within acceptable limit and it achieves acceptable Packet Delivery Ratio for medium mobility applications.
Resumo:
The problem of admission control of packets in communication networks is studied in the continuous time queueing framework under different classes of service and delayed information feedback. We develop and use a variant of a simulation based two timescale simultaneous perturbation stochastic approximation (SPSA) algorithm for finding an optimal feedback policy within the class of threshold type policies. Even though SPSA has originally been designed for continuous parameter optimization, its variant for the discrete parameter case is seen to work well. We give a proof of the hypothesis needed to show convergence of the algorithm on our setting along with a sketch of the convergence analysis. Extensive numerical experiments with the algorithm are illustrated for different parameter specifications. In particular, we study the effect of feedback delays on the system performance.
Resumo:
Using the treatment of Smith et al., charge distribution in and consequently the dipole moments of several aliphatic acids have been evaluated. The electric moments of chloro (2·86 D), bromo (2·90 D), iodo (2·06 D) and trichloro (3·00 D) acetic acids have been measured in dioxan solution at 35°. The experimental values are compared with those calculated theoretically and discussed in terms of the various possible structures.
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.
Resumo:
Dielectric measurements have been made on a number of molecular complexes of beryllium, zinc, cadmium and mercuric halides. The polarizations observed have been interpreted in terms of a tetrahedral configuration for the undissociated beryllium, zinc and cadmium halide complexes. In other cases the observed polarization has been shown to be due to the dissociation of the complex in solution.
Resumo:
Background: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. Methods: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. Results: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. Conclusion: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.
Resumo:
Background: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. Methods: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. Results: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. Conclusion: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.
Resumo:
Using the treatment of Smith et al. charge distributions in and consequently the dipole moments of some aliphatic nitro compounds and oximes have been evaluated. The mesomeric moment derived as a difference between the calculated and the observed values gives a clear picture as to how the positive (+M) and the negative (-M) mesomeric effects operate in such systems.
Resumo:
Query incentive networks capture the role of incentives in extracting information from decentralized information networks such as a social network. Several game theoretic tilt:Kids of query incentive networks have been proposed in the literature to study and characterize the dependence, of the monetary reward required to extract the answer for a query, on various factors such as the structure of the network, the level of difficulty of the query, and the required success probability.None of the existing models, however, captures the practical andimportant factor of quality of answers. In this paper, we develop a complete mechanism design based framework to incorporate the quality of answers, in the monetization of query incentive networks. First, we extend the model of Kleinberg and Raghavan [2] to allow the nodes to modulate the incentive on the basis of the quality of the answer they receive. For this qualify conscious model. we show are existence of a unique Nash equilibrium and study the impact of quality of answers on the growth rate of the initial reward, with respect to the branching factor of the network. Next, we present two mechanisms; the direct comparison mechanism and the peer prediction mechanism, for truthful elicitation of quality from the agents. These mechanisms are based on scoring rules and cover different; scenarios which may arise in query incentive networks. We show that the proposed quality elicitation mechanisms are incentive compatible and ex-ante budget balanced. We also derive conditions under which ex-post budget balance can beachieved by these mechanisms.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.
Resumo:
We present a new computationally efficient method for large-scale polypeptide folding using coarse-grained elastic networks and gradient-based continuous optimization techniques. The folding is governed by minimization of energy based on Miyazawa–Jernigan contact potentials. Using this method we are able to substantially reduce the computation time on ordinary desktop computers for simulation of polypeptide folding starting from a fully unfolded state. We compare our results with available native state structures from Protein Data Bank (PDB) for a few de-novo proteins and two natural proteins, Ubiquitin and Lysozyme. Based on our simulations we are able to draw the energy landscape for a small de-novo protein, Chignolin. We also use two well known protein structure prediction software, MODELLER and GROMACS to compare our results. In the end, we show how a modification of normal elastic network model can lead to higher accuracy and lower time required for simulation.