130 resultados para Electric conductors
Resumo:
Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.
Resumo:
As aircraft technology is moving towards more electric architecture, use of electric motors in aircraft is increasing. Axial flux BLDC motors (brushless DC motors) are becoming popular in aero application because of their ability to meet the demand of light weight, high power density, high efficiency and high reliability. Axial flux BLDC motors, in general, and ironless axial flux BLDC motors, in particular, come with very low inductance Owing to this, they need special care to limit the magnitude of ripple current in motor winding. In most of the new more electric aircraft applications, BLDC motor needs to be driven from 300 or 600 Vdc bus. In such cases, particularly for operation from 600 Vdc bus, insulated-gate bipolar transistor (IGBT)-based inverters are used for BLDC motor drive. IGBT-based inverters have limitation on increasing the switching frequency, and hence they are not very suitable for driving BLDC motors with low winding inductance. In this study, a three-level neutral point clamped (NPC) inverter is proposed to drive axial flux BLDC motors. Operation of a BLDC motor driven from three-level NPC inverter is explained and experimental results are presented.
Resumo:
In this paper a study on effect of different energization on removal of NOX in diesel engine exhaust has been presented. Here we made a detailed qualitative study of effect of pulsed/ac/dc voltage energizations on the NOX treatment of using conventional wire-cylinder reactor configuration. It was observed that amongst different energizations, pulse energization exhibits maximum NOX removal efficiency when compared to ac and dc energizations. For a given specific energy density, wire-cylinder reactor filled with BaTiO3 pellet gives higher NOX removal efficiency when compared to reactor without pellets under both pulse and ac energization. The dc energization does not have much impact on the removal processes. The paper further discusses the individual energization cases in detail.
Resumo:
This study examines the thermal efficiency of the operation of arc furnace and the effects of harmonics and voltage dips of a factory located near Bangkok. It also attempts to find ways to improve the performance of the arc furnace operation and minimize the effects of both harmonics and voltage dips. A dynamic model of the arc furnace has been developed incorporating both electrical and thermal characteristics. The model can be used to identify potential areas for improvement of the furnace and its operation. Snapshots of waveforms and measurement of RMS values of voltage, current and power at the furnace, at other feeders and at the point of common coupling were recorded. Harmonic simulation program and electromagnetic transient simulation program were used in the study to model the effects of harmonics and voltage dips and to identify appropriate static and dynamic filters to minimize their effects within the factory. The effects of harmonics and voltage dips were identified in records taken at the point of common coupling of another factory supplied by another feeder of the same substation. Simulation studies were made to examine the results on the second feeder when dynamic filters were used in the factory which operated the arc furnace. The methodology used and the mitigation strategy identified in the study are applicable to general situation in a power distribution system where an arc furnace is a part of the load of a customer
Resumo:
The bulk of power transmission from the generating stations to the load centres is carried through overhead lines. The distances involved could span several hundreds of kilometres. To minimize line losses, power transmission over such long distances is carried out at high voltages (several hundreds of kV). A network of outdoor lines operating at different voltages has been found to be the most economical method of power delivery. The disc insulators perform dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower. These insulators have to perform under various environmental conditions; hence the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. In view of this the present investigation aims to simulate the surface electric field stress on different types of porcelain/ceramic insulators; both normal and anti-fog type discs which are used for high voltage transmission/distribution systems are considered. The surface charge simulation method is employed for the field computation to simulate potential, electric field, surface and bulk/volume stress.
Resumo:
A molecular dynamics study of the dependence of diffusivity of the cation on ionic radii in molten AgI is reported. We have employed modified Parinello-Rahman-Vashistha interionic pair potential proposed by Shimojo and Kobayashi.(1) Our results suggest that the diffusivity of the cation exhibits an increase followed by a decrease as the ionic radius is increased. Several structural and dynamical properties are reported.
Resumo:
The lead free ferroelectric Na1/2Bi1/2TiO3 (NBT) is shown to exhibit electric-field-induced monoclinic (Cc) to rhombohedral (R3c) phase transformation at room temperature. This phenomenon has been analyzed both from the viewpoint of the intrinsic polarization rotation and adaptive phase models. In analogy with the morphotropic phase boundary systems, NBT seems to possess intrinsic competing ferroelectric instabilities near room temperature.
Resumo:
Ceramic/Porcelain suspension disc insulators are widely used in power systems to provide electrical insulation and mechanically support for high-voltage transmission lines. These insulators are subjected to a variety of stresses, including mechanical, electrical and environmental. These stresses act in unison. The exact nature and magnitude of these stresses vary significantly and depends on insulator design, application and its location. Due to various reasons the insulator disc can lose its electrical insulation properties without any noticeable mechanical failure. Such a condition while difficult to recognize, can enhance the stress on remaining healthy insulator discs in the string further may lead to a flashover. To understand the stress enhancement due to faulty discs in a string, attempt has been made to simulate the potential and electric field profiles for various disc insulators presently used in the country. The results of potential and electric filed stress obtained for normal and strings with faulty insulator discs are presented.
Resumo:
Organic plastic crystalline soft matter ion conductors are interesting alternatives to liquid electrolytes in electrochemical storage devices such as Lithium-ion batteries. The solvent dynamics plays a major role in determining the ion transport in plastic crystalline ion conductors. We present here an analysis of the frequency-dependent ionic conductivity of succinonitrile-based plastic crystalline ion conductors at varying salt composition (0.005 to 1 M) and temperature (-20 to 60 degrees C) using time-temperature superposition principle (TTSP). The main motivation of the work has been to establish comprehensive insight into the ion transport mechanism from a single method viz, impedance spectroscopy rather than employing cluster of different characterization methods probing various length and time scales. The TTSP remarkably aids in explicit identification of the extent of the roles of solvent dynamics and ion-ion interactions on the effective conductivity of the orientationally disordered plastic crystalline ion conductors.
Resumo:
We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402
Resumo:
Electric current can induce long-range flow of liquid metals over a conducting substrate. This work reports on the effect of the substrate surface roughness on the liquid metal-front velocity during such a flow. Experiments were conducted by passing electric current through liquid gallium placed over similar to 170 nm thick, 500 mu m wide gold and platinum films of varying roughness. The ensuing flow, thus, resembles micro-fluidics behavior in an open-channel. The liquid-front velocity decreased linearly with the substrate surface roughness; this is attributed to the reduction in the effective electric field along the liquid metal-substrate interface with the substrate surface roughness. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790182]
Resumo:
In this paper, we study the Fowler-Nordheim field emission (FNFE) from carbon nanotubes on the basis of a newly formulated electron dispersion law by considering the fact that the intense electric field needed for FNFE changes the band structure in a fundamental way. It has been found that the field emitted current increases with increasing electric field in oscillatory manner due to the appearance of van Hove singularities and exhibits spikes for particular values of the electric field where the singularity occurs. The numerical values of the field emitted current in all the cases vary widely and the determined by the chiral indices and the diameter in the respective cases. The results of this paper find three applications in the fields of nanoscience and technology.