113 resultados para Droplet-vitrification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI) engine sprays and briefly for spark ignition (SI) engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and haw narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI) engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI) engines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many industrial processes involve reaction between the two immiscible liquid systems. It is very important to increase the efficiency and productivity of such reactions. One of the important processes that involve such reactions is the metal-slag system. To increase the reaction rate or efficiency, one must increase the contact surface area of one of the phases. This is either done by emulsifying the slag into the metal phase or the metal into the slag phase. The latter is preferred from the stability viewpoint. Recently, we have proposed a simple and elegant mathematical model to describe metal emulsification in the presence of bottom gas bubbling. The same model is being extended here. The effect of slag and metal phase viscosity, density and metal droplet size on the metal droplet velocity in the slag phase is discussed for the above mentioned metal emulsification process. The models results have been compared with experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, a novel air-assisted impinging jet atomization is demonstrated. A configuration in which a gas jet is directed on to the impinging point of two liquid jets is used to improve the atomization. The effect of liquid properties such as viscosity and surface tension, angle between liquid jets and gas injection orifice diameter on spray characteristics has been experimentally studied. Backlit imaging and particle/droplet imaging and analysis techniques are utilized to characterize the sprays. The experimental results indicate that the effect of liquid viscosity is significant on the liquid sheet break up formed by the impinging jets. However, surface tension does not affect the spray structure significantly in this mode of atomization. At low liquid jet velocity, the prompt mode of atomization is observed where as atomization occurs in classical mode at higher liquid jet velocity. Results showed that variation in the angle between liquid jets do not affect the breakup phenomenon significantly. The spray angle is computed by finding the angle between the lines joining the impinging point and spray edge at an axial distance of 15 mm downstream of the impinging point from the ensemble-averaged data over 100 spray images. It was observed that effect of liquid jets impinging angle on the spray angle is higher at higher liquid velocity. Higher viscosity liquids exhibit lower spray angles. Droplet size measurements indicate a radial variation in the spray. An overall Sauter Mean Diameter (SMD) value is obtained by combining the droplet statistics at all radial locations at a fixed axial location. A very interesting trend is that the SMD is constant beyond a critical Gas to Liquid Ratio (GLR) and momentum ratio for a large variation in liquid viscosity and surface tension. This observation has important ramifications for fuel flexible systems. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with an experimental study of pressure-swirl hydraulic injector nozzles using non-intrusive optical techniques. Experiments were conducted to study atomization characteristics using two nozzles with different orifice diameters, 0.3 mm and 0.5 mm, and injection pressures, 0.3-3.5 Mpa, which correspond to Reynolds number (Re-p) = 7,000-45,000, depending on nozzle utilized. Three laser diagnostic techniques were utilized: Shadowgraph, PIV (Particle Image Velocimetry), and PDPA (Phase Doppler Particle Anemometry). Measurements made in the spray in both axial and radial directions indicate that velocity, average droplet diameter profiles, and spray dynamics are highly dependent on the nozzle characteristics and injection pressure. Limitations of these techniques in the different flow regimes, related to the primary and secondary breakups as well as coalescence, are provided. Results indicate that all three techniques provide similar results throughout the different regimes. Shadowgraph and PDPA were possible in the secondary atomization and coalescence regimes while PIV measurements could be made only at the end of secondary atomization and coalescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boswellia papyrifera and Boswellia carterii diffuses smoke polluting air that adversely affects indoor environment that certainly harm human health. Therefore, this study aims at ascertaining the effect of these plants on gonadal hormones and molecular changes in rat spermatozoa. The animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Significant decreases in FSH, LH and testosterone levels were evidenced, along with a reduction of protein, sialic acid, and carnitine levels. In sperm physiology, sperm count, motility, speed decrease, whereas sperm anomalies increase. TEM observation indicates morphological changes in plasma and acrosomal membranes, cytoplasmic droplet in the tail region, vacuolated, and disorganization of the mitochondrial sheath. These findings demonstrate that B. papyrifera and B. carterii smoke affects the process of sperm formation and maturation, which indicates the detrimental effects of these plants on the reproductive system. (c) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.d

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex multiscale physics of nano-particle laden functional droplets in a reacting environment is of fundamental and applied significance for a wide variety of applications ranging from thermal sprays to pharmaceutics to modern day combustors using new brands of bio-fuels. Formation of homogenous nucleated bubbles at the superheat limit inside vaporizing droplets (with or without nanoparticles) represents an unstable system. Here we show that self-induced boiling in burning functional pendant droplets can produce severe volumetric shape oscillations. Internal pressure build-up due to ebullition activity ejects bubbles from the droplet domain causing undulations on the droplet surface and oscillations in bulk. Through experiments, we establish that the degree of droplet deformation depends on the frequency and intensity of these bubble expulsion events. In a distinct regime of single isolated bubble residing in the droplet, however, pre-ejection transient time is identified by Darrieus-Landau evaporative instability, where bubble-droplet system behaves as a synchronized driver-driven system with bulk bubble-shape oscillations being imposed on the droplet. The agglomeration of nanophase additives modulates the flow structures within the droplet and also influences the bubble inception and growth leading to different levels of instabilities. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work analyses the unique spatio-temporal alteration of the deposition pattern of evaporating nanoparticle laden droplets resting on a hydrophobic surface through targeted low frequency substrate vibrations. External excitation near the lowest resonant mode (n = 2) of the droplet initially de-pins and then subsequently re-pins the droplet edge creating pseudo-hydrophilicity (low contact angle). Vibration subsequently induces droplet shape oscillations (cyclic elongation and flattening) resulting in strong flow recirculation. This strong radially outward liquid flow augments nanoparticle transport, vaporization, and agglomeration near the pinned edge resulting in much reduced drying time under certain characteristic frequency of oscillations. The resultant deposit exhibits a much flatter structure with sharp, defined peripheral wedge topology as compared to natural drying. Such controlled manipulation of transport enables tailoring of structural and topological morphology of the deposits and offers possible routes towards controlling the formation and drying timescales which are crucial for applications ranging from pharmaceutics to surface patterning. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shape dynamics of droplets exposed to an air jet at intermediate droplet Reynolds numbers is investigated. High speed imaging and hot-wire anemometry are employed to examine the mechanism of droplet oscillation. The theory that the vortex shedding behind the droplet induces oscillation is examined. In these experiments, no particular dominant frequency is found in the wake region of the droplet. Hence the inherent free-stream disturbances prove to be driving the droplet oscillations. The modes of droplet oscillation show a band of dominant frequencies near the corresponding natural frequency, further proving that there is no particular forcing frequency involved. In the frequency spectrum of the lowest mode of oscillation for glycerol at the highest Reynolds number, no response is observed below the threshold frequency corresponding to the viscous dissipation time scale. This selective suppression of lower frequencies in the case of glycerol is corroborated by scaling arguments. The influence of surface tension on the droplet oscillation is studied using ethanol as a test fluid. Since a lower surface tension reduces the natural frequency, ethanol shows lower excited frequencies. The oscillation levels of different fluids are quantified using the droplet aspect ratio and correlated in terms of Weber number and Ohnesorge number. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, the spray structure of diesel from a 200-mu m, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean `Diameter (SMD) is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, a detailed visualization of the transport of fuel film has been performed in a small carburetted engine with a transparent manifold at the exit of the carburettor. The presence of fuel film is observed significantly on the lower half of the manifold at idling, while at load conditions, the film is found to be distributed all throughout the manifold walls. Quantitative measurement of the fuel film in a specially-designed manifold of square cross section has also been performed using the planar laser-induced fluorescence (PLIF) technique. The measured fuel film thickness is observed to be of the order of 1 nun at idling, and in the range of 0.1 to 0.4 mm over the range of load and speed studied. These engine studies are complemented by experiments conducted in a carburettor rig to study the state of the fuel exiting the carburettor. Laser-based Particle/Droplet Image Analysis (PDIA) technique is used to identify fuel droplets and ligaments and estimate droplet diameters. At a throttle position corresponding to idling, the fuel exiting the carburettor is found to consist of very fine droplets of size less than 15 mu m and large fuel ligaments associated with length scales of the order of 500 mu m and higher. For a constant pressure difference across the carburettor, the fuel consists of droplets with an SMD of the order of 30 mu m. Also, the effect of liquid fuel film on the cold start HC emissions is studied. Based on the understanding obtained from these studies, strategies such as manifold heating and varying carburettor main jet nozzle diameter are implemented. These are observed to reduce emissions under both idling and varying load conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. Although observations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the Dynamical Facilitation (DF) theory lacks experimental support. Further, for vitrification induced by randomly freezing a subset of particles in the liquid phase, simulations support the existence of an underlying thermodynamic phase transition, whereas the DF theory remains unexplored. Here, using video microscopy and holographic optical tweezers, we show that DF in a colloidal glass-forming liquid grows with density as well as the fraction of pinned particles. In addition, we observe that heterogeneous dynamics in the form of string-like cooperative motion emerges naturally within the framework of facilitation. Our findings suggest that a deeper understanding of the glass transition necessitates an amalgamation of existing theoretical approaches.