198 resultados para Dispersion medium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Dolapix PC75 on the electrokinetic and rheological behavior of nano zirconia particles is presented here. The effect of pH, concentration of dispersant, and solids loading on zeta-potential and rheological behavior was studied. Upon interaction with the dispersant, the iso-electric point of zirconia changed and the surface became more negative with increasing concentration of dispersant, suggesting a strong interaction. Maximum charge was obtained in the presence of about 200ppm of Dolapix. Rheological tests at pH 7 showed that the zirconia suspension is viscous at high solids loading and addition of the dispersant decreased the viscosity substantially especially at high solids loading (50wt%). Sedimentation tests confirmed that Dolapix PC75 is a good dispersant for zirconia particles at pH values of 7 and above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the development and performance evaluation of three modified versions of a scheme proposed for medium access control in local area networks. The original scheme implements a collision-free and fair medium arbitration by using a control wire in conjunction with a data bus. The modifications suggested in this paper are intended to realize the multiple priority function in local area networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical values of gA are evaluated using quantum-chromodynamic sum rules. The nuclear medium effects are taken into account by modifying the chiral symmetry breaking correlation, . Our results indicate a quenching of gA in a nuclear medium. The physical reasons for this fundamental quenching are noted to be the same for the effective mass of the nucleon bound in a nucleus being less than its free space value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical resistivity in the binary liquid systems n-C7H16 + CH3OH and CS2 + CH3NO2 is measured from 10 Hz to 100 kHz. There is no noticeable effect of the frequency on the resistivity singularities. Thus any contribution from dielectric dispersion is not appreciable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface between two polar semiconductors can support three types of phonon-plasmon-polariton modes propagating in three well-defined frequency windows ??1?[min(?1,?3),?R1], ??2?[max(?2,?4),?R2], and ??3?[min(?2,?4),?R3]. The limiting frequencies ?1,2,3,4 are defined by ?1(?)=0, ?2(?)=0, and ?R1,2,3 by ?1(?)+?2(?)=0, where ?i(?) are dielectric functions of the two media with i=1,2. The dispersion, decay distances, and polarization of the three modes are discussed. The variation of the limiting frequencies with the interface plasma parameter ???p22/?p12 reveals an interesting feature in the dispersion characteristics of these modes. For the interfaces for which the bulk coupled phonon-plasmon frequencies of medium 1 are greater than the LO frequency or are less than the TO frequency of medium 2, there exist two values of ?=?1 and ?2(medium 1, i.e., without showing any dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using normal mode analysis Rayleigh-Taylor instability is investigated for three-layer viscous stratified incompressible steady flow, when the top 3rd and bottom 1st layers extend up to infinity, the middle layer has a small thickness δ. The wave Reynolds number in the middle layer is assumed to be sufficiently small. A dispersion relation (a seventh degree polynomial in wave frequency ω) valid up to the order of the maximal value of all possible Kj (j less-than-or-equals, slant 0, K is the wave number) in each coefficient of the polynomial is obtained. A sufficient condition for instability is found out for the first time, pursuing a medium wavelength analysis. It depends on ratios (α and β) of the coefficients of viscosity, the thickness of the middle layer δ, surface tension ratio T and wave number K. This is a new analytical criterion for Rayleigh-Taylor instability of three-layer fluids. It recovers the results of the corresponding problem for two-layer fluids. Among the results obtained, it is observed that taking the coefficients of viscosity of 2nd and 3rd layers same can inhibit the effect of surface tension completely. For large wave number K, the thickness of the middle layer should be correspondingly small to keep the domain of dependence of the threshold wave number Kc constant for fixed α, β and T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses the European Centre for Medium-Range Weather Forecasts (ECMWF) model-generated high-resolution 10-day-long predictions for the Year of Tropical Convection (YOTC) 2008. Precipitation forecast skills of the model over the tropics are evaluated against the Tropical Rainfall Measuring Mission (TRMM) estimates. It has been shown that the model was able to capture the monthly to seasonal mean features of tropical convection reasonably. Northward propagation of convective bands over the Bay of Bengal was also forecasted realistically up to 5 days in advance, including the onset phase of the monsoon during the first half of June 2008. However, large errors exist in the daily datasets especially for longer lead times over smaller domains. For shorter lead times (less than 4-5 days), forecast errors are much smaller over the oceans than over land. Moreover, the rate of increase of errors with lead time is rapid over the oceans and is confined to the regions where observed precipitation shows large day-to-day variability. It has been shown that this rapid growth of errors over the oceans is related to the spatial pattern of near-surface air temperature. This is probably due to the one-way air-sea interaction in the atmosphere-only model used for forecasting. While the prescribed surface temperature over the oceans remain realistic at shorter lead times, the pattern and hence the gradient of the surface temperature is not altered with change in atmospheric parameters at longer lead times. It has also been shown that the ECMWF model had considerable difficulties in forecasting very low and very heavy intensity of precipitation over South Asia. The model has too few grids with ``zero'' precipitation and heavy (>40 mm day(-1)) precipitation. On the other hand, drizzle-like precipitation is too frequent in the model compared to that in the TRMM datasets. Further analysis shows that a major source of error in the ECMWF precipitation forecasts is the diurnal cycle over the South Asian monsoon region. The peak intensity of precipitation in the model forecasts over land (ocean) appear about 6 (9) h earlier than that in the observations. Moreover, the amplitude of the diurnal cycle is much higher in the model forecasts compared to that in the TRMM estimates. It has been seen that the phase error of the diurnal cycle increases with forecast lead time. The error in monthly mean 3-hourly precipitation forecasts is about 2-4 times of the error in the daily mean datasets. Thus, effort should be given to improve the phase and amplitude forecast of the diurnal cycle of precipitation from the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixed boundary value problem associated with the diffusion equation that involves the physical problem of cooling of an infinite parallel-sided composite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speedv. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming the front layer of the fluid to be of finite width and the back layer of infinite extent. The main problem is solved through a three-part Wiener-Hopf problem of a special type and the numerical results under certain special circumstances are obtained and presented in the form of a table.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the hydrodynamic evolution of gas in the interstellar medium of the host galaxy of a quasar due to Compton heating by the QSO radiation. We show that a Lagrangean formulation of the problem is necessary. It is found that the "hydrodynamic time scale" becomes important compared to the Compton heating time scale. We also relax the "single fluid" approximation by considering the existence of clouds and taking into account the mass loss from stars. The results predict star burst activity, and thus we explain the blue colors of the active galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersive characteristic of hydromagnetic surface waves along a plasma-plasma interface when the upper fluid moves with a uniform velocity is discussed. The region of propagation of these waves is shifted above or below depending on whether the basic velocity (uniform)Ugl0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present in situ chemical treatment technologies for mitigation of petroleum hydrocarbon contamination are in the developmental stage or being tested. To devise efficient strategies for restricting the movement of petroleum hydrocarbon (PHC) molecules in the contaminated soil, it is proposed to utilize the sorption–interaction relationships between the petroleum contaminants and the soil substrate. The basic questions addressed in this paper are as follows (i) What are the prominent chemical constituents of the various petroleum fractions that interact with the soil substrate? (ii) What are the functional groups of a soil that interact with the contaminants? (iii) What are the bonding mechanisms possible between the soil functional groups and the PHC contaminants? (iv) What are the consequent changes brought about the soil physical properties on interaction with PHC's? (v) What are the factors influencing the interactions between PHC molecules and clay particles of the soil substrate? (vi) What is the possibility of improving the soil's attenuation ability for PHC's? The development of answers to the basic questions reveal that petroleum hydrocarbons comprise a mixture of nonpolar alkanes and aromatic and polycyclic hydrocarbons, that have limited solubility in water. The bonding mechanism between the nonpolar PHC's and the clay surface is by way of van der Waals attraction. The adsorption of the nonpolar hydrocarbons by the clay surface occurs only when their (i.e., the hydrocarbon molecules) solubility in water is exceeded and the hydrocarbons exist in the micellar form. Dilute solutions of hydrocarbons in water, i.e., concentrations of hydrocarbons at or below the solubility limit, have no effect on the hydraulic conductivity of clay soils. Permeation with pure hydrocarbons invariably influences the clay hydraulic conductivity. To improve the attenuation ability of soils towards PHC's, it is proposed to coat the soil surface with "ultra" heavy organic polymers. Adsorption of organic polymers by the clay surface may change the surface properties of the soil from highly hydrophilic (having affinity for water molecules) to organophilic (having affinity for organic molecules). The organic polymers attached to the clay surface are expected to attenuate the PHC molecules by van der Waals attraction, by hydrogen bonding, and also by adsorption into interlayer space in the case of soils containing swelling clays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkali metal perchlorates (KClO4, RbClO4, and CsClO4) undergo a structural phase transition from the orthorhombic to the cubic phase at elevated temperatures. A detailed dielectric study of these crystals across the phase transition is carried out at different frequencies. The crystals are found to exhibit pronounced dielectric dispersion in the kHz frequency range. The results support the view that these transitions are of order–disorder type. The dielectric behaviour at temperatures above Tc is discussed in terms of modulus spectroscopy. An estimate of conductivity relaxation times above the phase transition temperatures made from modulus spectroscopy data gives values of 3.1, 12.2 and 17.7 μs for KClO4, RbClO4, and CsClO4, respectively.