99 resultados para Difference Equations with Maxima
Resumo:
The flow, heat and mass transfer problem for a steady laminar incompressible boundary layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass transfer is more pronounced on the skin friction than on the heat transfer. The results have been compared with those of the series solution, the asymptotic solution, the Glauert and Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods. Good agreement is found with all of them, except with the results of the local similarity and series solution methods.
Resumo:
The unsteady pseudo plane motions have been investigated in which each point of the parallel planes is subjected to non-torsional oscillations in their own plane and at any given instant the streamlines are concentric circles. Exact solutions are obtained and the form of the curve , the locus of the centers of these concentric circles, is discussed. The existence of three infinite sets of exact solutions, for the flow in the geometry of an orthogonal rheometer in which the above non-torsional oscillations are superposed on the disks, is established. Three cases arise according to whether is greater than, equal to or less than , where is angular velocity of the basic rotation and is the frequency of the superposed oscillations. For a symmetric solution of the flow these solutions reduce to a single unique solution. The nature of the curve is illustrated graphically by considering an example of the flow between coaxial rotating disks.
Resumo:
The effect of injection and suction on the generalised vortex flow of a steady laminar incompressible fluid over a stationary infinite disc with or without magnetic field under boundary-layer approximations has been studied. The coupled nonlinear ordinary differential equations governing the self-similar flow have been numerically solved using the finite-difference scheme. The results indicate that the injection produces a deeper inflow layer and de-stabilises the motion while suction or magnetic field suppresses the inflow layer and produces stability. The effect of decreasingn, the parameter characterising the nature of vortex flow, is similar to that of increasing the injection rate.
Resumo:
All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.
Resumo:
A numerical procedure, based on the parametric differentiation and implicit finite difference scheme, has been developed for a class of problems in the boundary-layer theory for saddle-point regions. Here, the results are presented for the case of a three-dimensional stagnation-point flow with massive blowing. The method compares very well with other methods for particular cases (zero or small mass blowing). Results emphasize that the present numerical procedure is well suited for the solution of saddle-point flows with massive blowing, which could not be solved by other methods.
Resumo:
The solution of the steady laminar incompressible nonsimilar magneto-hydrodynamic boundary layer flow and heat transfer problem with viscous dissipation for electrically conducting fluids over two-dimensional and axisymmetric bodies with pressure gradient and magnetic field has been presented. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for flow over a cylinder and a sphere. The results indicate that the magnetic field tends to delay or prevent separation. The heat transfer strongly depends on the viscous dissipation parameter. When the dissipation parameter is positive (i.e. when the temperature of the wall is greater than the freestream temperature) and exceeds a certain value, the hot wall ceases to be cooled by the stream of cooler air because the ‘heat cushion’ provided by the frictional heat prevents cooling whereas the effect of the magnetic field is to remove the ‘heat cushion’ so that the wall continues to be cooled. The results are found to be in good agreement with those of the local similarity and local nonsimilarity methods except near the point of separation, but they are in excellent agreement with those of the difference-differential technique even near the point of separation.
Resumo:
Abstract is not available.
Resumo:
The effect of vectored mass transfer on the flow and heat transfer of the steady laminar incompressible nonsimilar boundary layer with viscous dissipation for two-dimensional and axisymmetric porous bodies with pressure gradient has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The skin friction is strongly influenced by the vectored mass transfer, and the heat transfer both by the vectored mass transfer and dissipation parameter. It is observed that the vectored suction tends to delay the separation whereas the effect of the vectored injection is just the reverse. Our results agree with those of the local nonsimilarity, difference-differential and asymptotic methods but not with those of the local similarity method.
Resumo:
The flow, heat and mass transfer problem for boundary layer swirling flow of a laminar steady compressible electrically conducting gas with variable properties through a conical nozzle and a diffuser with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme after they have been transformed into dimensionless form using the modified Lees transformation. The results indicate that the skin friction and heat transfer strongly depend on the magnetic field, mass transfer and variation of the density-viscosity product across the boundary layer. However, the effect of the variation of the density-viscosity product is more pronounced in the case of a nozzle than in the case of a diffuser. It has been found that large swirl is required to produce strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying appropriate amount of suction. The results are found to be in good agreement with those of the local nonsimilarity method, but they differ quite significantly from those of the local similarity method.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.
Resumo:
A modified set of governing equations for gas-particle flows in nozzles is suggested to include the inertial forces acting on the particle phase. The problem of gas-particle flow through a nozzle is solved using a first order finite difference scheme. A suitable stability condition for the numerical scheme for gas-particle flows is defined. Results obtained from the present set of equations are compared with those of the previous set of equations. It is also found that present set of equations give results which are in good agreement with the experimental observation.
Resumo:
The steady laminar compressible boundary-layer swirling flow with variable gas properties and mass transfer through a conical nozzle, and a diffuser with a highly cooled wall has been studied. The partial differential equations governing the nonsimilar flow have been transformed to a system of coordinates using modified Lees transformation. The resulting equations are transformed into coordinates having finite ranges by means of a transformation which maps an infinite region into a finite region. The ensuing equations are then solved numerically using an implicit finite-difference scheme. The results indicate that the variation of the density-viscosity product across the boundary layer and mass transfer have strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying suction. The results are found to be in good agreement with those of the local nonsimilarity method but they differ appreciably from those of the local similarity method.