285 resultados para Didactic laboratory of physics
Resumo:
The relationship between the parameters in a description based on a mesoscale free energy functional for the concentration field and the macroscopic properties, such as the bending and compression moduli and the permeation constant, are examined for an asymmetric lamellar phase where the mass fractions of the hydrophobic and hydrophilic parts are not equal. The difference in the mass fractions is incorporated using a cubic term in the free energy functional, in addition to the usual quadratic and quartic terms in the Landau–Ginsburg formulation. The relationship between the coefficient of the cubic term and the difference in the mass fractions of the hydrophilic and hydrophobic parts is obtained. For a lamellar phase, it is important to ensure that the surface tension is zero due to symmetry considerations. The relationship between the parameters in the free energy functional for zero surface tension is derived. When the interface between the hydrophilic and hydrophobic parts is diffuse, it is found that the bending and compression moduli, scaled by the parameters in the free energy functional, do increase as the asymmetry in the bilayer increases. When the interface between the hydrophilic and hydrophobic parts is sharp, the scaled bending and compression moduli show no dependence on the asymmetry in the bilayer. The ratio of the permeation constant in between the water and bilayer in a molecular description and the Onsager coefficient in the mesoscale description is O(1) for both sharp and diffuse interfaces and it increases as the difference in the mass fractions is increased.
Resumo:
We present results of mechanical stress relaxation measurements on polymers confined at the air-water interface in the form of a monolayer. Systematic measurements allow, to our knowledge, for the first time, observation of the scaling of the stress relaxation time of the highly confined polymers as a function of both surface concentration and molecular weight. The observed scaling is found to be very close to that expected for motion of unentangled polymer solutions with hydrodynamic interactions. Our experimental observations thus clearly rule out the possibility of entanglement and hence reptation as a mode of relaxation in such highly confined polymeric systems.
Resumo:
A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH,1 crystallizes in this structure, while NH,F is found in the ZnO structure, and NH&I and NH,Br occur in the CsCl structure. We show that a distributed charge on the NH,+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH,+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH,F compares well with experiment. Barring the poorly understood NH,F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH,F.
Resumo:
Proton spin lattice relaxation (T1) in (CH3)4NCdBr3 at different Larmor frequencies (10, 20 and 30 MHz) has been studied in the temperature range 77 to 400 K. The variations in T1 at high temperature are independent of frequency and show a maximum due to spin rotation- interaction. The other features are interpreted as being due to isotropic tumbling of the tetramethylammonium ion and random reorientation of the CH3 group. The CW spectrum remained narrow up to 77 K and develops a wing structure at low temperatures. This observation is attributed to a possible tunnelling motion of the CH3 group, which has rather low activation energy as demonstrated by the study of T1.
Resumo:
It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.
Resumo:
Theoretical optimization studies of the performance of a combustion driven premixed two-phase flow gasdynamic laser are presented. The steady inviscid nonreacting quasi-one-dimensional two-phase flow model including appropriate finite rate vibrational kinetic rates has been used in the analysis. The analysis shows that the effect of the particles on the optimum performance of the two-phase laser is very small. The results are presented in graphical form. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.
Resumo:
An EXAFS study at the AsK edge of the ternary glasses As2(S, Se)3 and As2(Se, Te)3 and the binary As2S3, As2Se3 and As2Te3 glasses has been carried out. Radial structure functions show that the environment of As in glasses of intermediate compositions is quite different from that in the binary glasses. In the As2(S, Se)3 system, this might arise from chemical disorder in the network while in the As2(Se, Te)3 system increased ionicity could be the cause of this behaviour. Glasses where the constituent atoms are of similar size seem to exhibit fewer peaks in the radial structure function.
Resumo:
Ferroelectric phase transition in ammonium sulfate has been studied by ESR of CrO43- radical substituting for SO42- ion in (NH4)2SO4. In addition to discontinuous changes at Tc, certain continuous changes are observed in ESR parameters of this probe below Tc, which reflect the role of the sulfate ion in the phase transition. A microscopic mechanism of the phase transition is proposed and discussed in terms of the change of orientation of the sulfate tetrahedron through a finite angle. The degree of the change of orientation below Tc is thought to be the possible order parameter of the phase transition.
Resumo:
The firing and delay characteristics of a simple coaxial type of triggered vacuum gap (TVG) are described and compared with the planar type. The designs are new and differ from those reported earlier. By analogy with gaseous breakdown the statistical and formative time lags have been determined.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
The Landau damping of sound wave in a plasma consisting of an ensemble of magnetic flux tubes with reference to the work by Ryutov and Ryutova (1976) is discussed. Sound waves cannot be Landau damped in general but under certain restriction conditions on plasma parameters the possibility of absorption of these waves can exist.
Resumo:
The dielectric measurement of ferroelectric trissarcosine calcium chloride (TSCC) was made under various pressures up to 6 kbar. A striking decrease in the peak value of the permittivity, epsilon r, at the transition temperature, Tc, was observed with increasing pressure. The value of Tc increases linearly with a pressure coefficient dTc/dp=11.1K kbar-1 at low pressures. This increase in Tc supports the suggestion that the ferroelectric transition is of the pure order-disorder type. It is suggested on the basis of the behaviour of epsilon r with pressure that the order of the ferroelectric transition changes from second to first order on application of pressure.
Resumo:
We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.
Resumo:
This paper reports on the liquid-helium-temperature (5 K) electron paramagnetic resonance (EPR) spectra of Cr3+ ions in the nanoparticles of SnO2 synthesized at 600 degrees C with concentrations of 0%, 0.1%, 0.5%, 1%, 1.5%, 2.0%, 2.5%, 3.0%, 5.0%, and 10%. Each spectrum may be simulated as overlap of spectra due to four magnetically inequivalent Cr3+ centers characterized by different values of the spin-Hamiltonian parameters. Three of these centers belong to Cr3+ ions in orthorhombic sites, situated near oxygen vacancies, characterized by very large zero-field splitting parameters D and E, presumably due to the presence of nanoparticles in the samples. The fourth EPR spectrum belongs to the Cr3+ ions situated at sites with tetragonal symmetry, substituting for the Sn4+ ion, characterized by a very small value of D. In addition, there appears a ferromagnetic resonance line due to oxygen defects for samples with Cr3+ concentrations of <= 2.5%. Further, in samples with Cr3+ concentrations of >2.5%, there appears an intense and wide EPR line due to the interactions among the Cr3+ ions in the clusters formed due to rather excessive doping; the intensity and width of this line increase with increasing concentration. The Cr3+ EPR spectra observed in these nanopowders very different from those in bulk SnO2 crystals.