172 resultados para Dense Linear Systems
Resumo:
t - N m and sufficient computable conditions are obtained for the obsemabii of systems with linear state equations and polgwmIal outputs. Based on these, initial state reconstmctors are also described.
Resumo:
Input-output stability of linear-distributed parameter systems of arbitrary order and type in the presence of a distributed controller is analyzed by extending the concept of dissipativeness, with certain modifications, to such systems. The approach is applicable to systems with homogeneous or homogenizable boundary conditions. It also helps in generating a Liapunov functional to assess asymptotic stability of the system.
Resumo:
In this paper a study of the free, forced and self-excited vibrations of non-linear, two degrees of freedom systems is reported. The responses are obtained by linearizing the nonlinear equations using the weighted mean square linearization approach. The scope of this approach, in terms of the type of non-linearities the method can tackle, is also discussed.
Resumo:
Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.
Resumo:
We have used the density matrix renormalization group (DMRG) method to study the linear and nonlinear optical responses of first generation nitrogen based dendrimers with donor acceptor groups. We have employed Pariser–Parr–Pople Hamiltonian to model the interacting pi electrons in these systems. Within the DMRG method we have used an innovative scheme to target excited states with large transition dipole to the ground state. This method reproduces exact optical gaps and polarization in systems where exact diagonalization of the Hamiltonian is possible. We have used a correction vector method which tacitly takes into account the contribution of all excited states, to obtain the ground state polarizibility, first hyperpolarizibility, and two photon absorption cross sections. We find that the lowest optical excitations as well as the lowest excited triplet states are localized. It is interesting to note that the first hyperpolarizibility saturates more rapidly with system size compared to linear polarizibility unlike that of linear polyenes.
Resumo:
In this paper a study of the free, forced and self-excited vibrations of non-linear, two degrees of freedom systems is reported. The responses are obtained by linearizing the nonlinear equations using the weighted mean square linearization approach. The scope of this approach, in terms of the type of non-linearities the method can tackle, is also discussed.
Resumo:
A frequency-domain positivity condition is derived for linear time-varying operators in2and is used to develop2stability criteria for linear and nonlinear feedback systems. These criteria permit the use of a very general class of operators in2with nonstationary kernels, as multipliers. More specific results are obtained by using a first-order differential operator with a time-varying coefficient as multiplier. Finally, by employing periodic multipliers, improved stability criteria are derived for the nonlinear damped Mathieu equation with a forcing function.
Resumo:
We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.
Resumo:
An iterative algorithm baaed on probabilistic estimation is described for obtaining the minimum-norm solution of a very large, consistent, linear system of equations AX = g where A is an (m times n) matrix with non-negative elements, x and g are respectively (n times 1) and (m times 1) vectors with positive components.
Resumo:
Criteria for the L2-stability of linear and nonlinear time-varying feedback systems are given. These are conditions in the time domain involving the solution of certain associated matrix Riccati equations and permitting the use of a very general class of L2-operators as multipliers.
Resumo:
This paper presents a systematic method of investigating the existence of limit cycle oscillations in feedback systems with combined integral pulse frequency-pulse width (IPF-P/V) modulation. The method is based on the non-linear discrete equivalence of the continuous feedback system containing the IPF-PW modulator.
Resumo:
A mathematical model of social interaction in the form of two coupler! first-order non-linear differential equations, forms the topic of this study. This non-conservative model io representative of such varied social interaction problems as coexisting sub-populations of two different species, arms race between two rival countries and the like. Differential transformation techniques developed elsewhere in the literature are seen to be effective tools of dynamic analysis of this non-linear non-conservative mode! of social interaction process.
Resumo:
A now procedure for the design of sensitivity-reduced control for linear regulators is described. The control is easily computable and implementable since it requires neither the solution of an increased-order augmented system nor the generation and feedback of a trajectory sensitivity vector. The method provides a trade-off between reduction in sensitivity measure and increase in performance index.
Resumo:
A class of feedback systems, consisting of dynamical non-linear subsystems which arise in many diverse control applications, is analyzed for L2-stability. It is shown that, although a transformation of these systems to the familiar Lur'e configuration does not seem to be possible, a one-to-one correspondence may be effected between the stability properties of these and the Lur'e systems. Interesting stability criteria are developed by exploiting this characteristic.
Resumo:
In this paper a strategy for controlling a group of agents to achieve positional consensus is presented. The proposed technique is based on the constraint that every agents must be given the same control input through a broadcast communication mechanism. Although the control command is computed using state information in a global framework, the control input is implemented by the agents in a local coordinate frame. We propose a novel linear programming formulation that is computationally less intensive than earlier proposed methods. Moreover, we introduce a random perturbation input in the control command that helps us to achieve perfect consensus even for a large number of agents, which was not possible with the existing strategy in the literature. Moreover, we extend the method to achieve positional consensus at a pre-specified location. The effectiveness of the approach is illustrated through simulation results.