121 resultados para Damage recovery
Resumo:
We report on the Lamb wave type guided wave propagation in honeycomb core sandwich structures. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented that proves the potential of Lamb wave type guided wave for detection of damage in sandwich structures. A sandwich panel is fabricated with planar dimension of 600 mm x 600 mm, having a core thickness of 7 mm, cell size of 5 mm and 0.1 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense a frequency band limited guided wave with a central frequency. A linear phased array of piezoelectric patch actuators is used to achieve higher signal strength and directivity. Group velocity dispersion curves and corresponding frequency response of sensed signal are obtained experimentally. Linearity between the excitation signal amplitude and the corresponding sensed signal amplitude is found for certain range of parameters. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Indentation and low velocity impact induced damages of increasing diameter covering several honeycomb cells are created. Crushing of honeycomb core with rupture of face sheet is observed while introducing the damage. The damages are then detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. Monotonic changes in the sensor signal amplitude due to increase in the damage size has been established successfully. With this approach it is possible to locate and monitor the damages with the help of phased array and by tracking the wave packets scattered from the damages. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Leaves and leaf sheath of banana and areca husk (Areca catechu) constitute an important component of urban solid waste (USW) in India which are difficult to degrade under normal windrow composting conditions. A successful method of anaerobic digestion built around the fermentation properties of these feedstock has been evolved which uses no moving parts, pretreatment or energy input while enabling recovery of four products: fiber, biogas, compost and pest repellent. An SRT of 27 d and 35 d was found to be optimum for fiber recovery for banana leaf and areca husk, respectively. Banana leaf showed a degradation pattern different from other leaves with slow pectin-1 degradation (80%) and 40% lignin removal in 27 d SRT. Areca husk however, showed a degradation pattern similar to other plant biomass. Mass recovery levels for banana leaf were fiber-20%, biogas-70% (400 ml/g TS) and compost-10%. For areca husk recovery was fiber-50%, biogas-45% (250 ml/g TS) and compost-5%. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper presents an experimental study on damage assessment of reinforced concrete (RC) beams subjected to incremental cyclic loading. During testing acoustic emissions (AEs) were recorded. The analysis of the AE released was carried out by using parameters relaxation ratio, load ratio and calm ratio. Digital image correlation (DIC) technique and tracking with available MATLAB program were used to measure the displacement and surface strains in concrete. Earlier researchers classified the damage in RC beams using Kaiser effect, crack mouth opening displacement and proposed a standard. In general (or in practical situations), multiple cracks occur in reinforced concrete beams. In the present study damage assessment in RC beams was studied according to different limit states specified by the code of practice IS-456:2000 and AE technique. Based on the two ratios namely load ratio and calm ratio and when the deflection reached approximately 85% of the maximum allowable deflection it was observed that the RC beams were heavily damaged. The combination of AE and DIC techniques has the potential to provide the state of damage in RC structures.
Resumo:
Traditional image reconstruction methods in rapid dynamic diffuse optical tomography employ l(2)-norm-based regularization, which is known to remove the high-frequency components in the reconstructed images and make them appear smooth. The contrast recovery in these type of methods is typically dependent on the iterative nature of method employed, where the nonlinear iterative technique is known to perform better in comparison to linear techniques (noniterative) with a caveat that nonlinear techniques are computationally complex. Assuming that there is a linear dependency of solution between successive frames resulted in a linear inverse problem. This new framework with the combination of l(1)-norm based regularization can provide better robustness to noise and provide better contrast recovery compared to conventional l(2)-based techniques. Moreover, it is shown that the proposed l(1)-based technique is computationally efficient compared to its counterpart (l(2)-based one). The proposed framework requires a reasonably close estimate of the actual solution for the initial frame, and any suboptimal estimate leads to erroneous reconstruction results for the subsequent frames.
Resumo:
The inverse problem in photoacoustic tomography (PAT) seeks to obtain the absorbed energy map from the boundary pressure measurements for which computationally intensive iterative algorithms exist. The computational challenge is heightened when the reconstruction is done using boundary data split into its frequency spectrum to improve source localization and conditioning of the inverse problem. The key idea of this work is to modify the update equation wherein the Jacobian and the perturbation in data are summed over all wave numbers, k, and inverted only once to recover the absorbed energy map. This leads to a considerable reduction in the overall computation time. The results obtained using simulated data, demonstrates the efficiency of the proposed scheme without compromising the accuracy of reconstruction.
Resumo:
In this work, an attempt has been made to assess the fatigue life of reinforced concrete beams, by proposing a crack propagation law which accounts for parameters such as fracture toughness, crack length, loading ratio and structural size. A numerical procedure is developed to compute fatigue life of RC beams. The predicted results are compared with the available experimental data in the literature and seen to agree reasonably well. Further, in order to assess the remaining life of an RC member, the moment carrying capacity is determined as a function of crack extension, based on the crack tip opening displacement and residual strength of the member is computed at an event of unstable fracture.
Resumo:
Structural health monitoring of existing infrastructure is currently an active field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical structures. Change of static deflection as the indicator of damage is the simplest tool in a structural health monitoring scenario of bridges that is least exploited in damage identification strategies. In this paper, some simple and elegant equations based on loss of symmetry due to damage are derived and presented for identification of damage in a bridge girder modeled as a simply supported beam using changes in static deflections and dynamic parameters. A single contiguous and distributed damage, typical of reinforced or prestressed concrete structures, is assumed for the structure. The methodology is extended for a base-line-free as well as base-line-inclusive measurement. Measurement strategy involves application of loads only at two symmetric points one at a time and deflection measurements at those symmetric points as well as at the midspan of the beam. A laboratory-based experiment is used to validate the approach. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The RAD51 paralogs XRCC3 and RAD51C have been implicated in homologous recombination (HR) and DNA damage responses. However, the molecular mechanism(s) by which these paralogs regulate HR and DNA damage signaling remains obscure. Here, we show that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We find that RAD51C but not XRCC2 is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G(2) phases. XRCC3 phosphorylation is required for chromatin loading of RAD51 and HR-mediated repair of double-strand breaks (DSBs). Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G(2)/M checkpoint independently of its phosphorylation. Strikingly, we find that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation is required for the HR-mediated recovery of collapsed replication forks but is dispensable for the restart of stalled replication forks. Together, these findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair.
Resumo:
Maintaining metadata consistency is a critical issue in designing a filesystem. Although satisfactory solutions are available for filesystems residing on magnetic disks, these solutions may not give adequate performance for filesystems residing on flash devices. Prabhakaran et al. have designed a metadata consistency mechanism specifically for flash chips, called Transactional Flash1]. It uses cyclic commit mechanism to provide transactional abstractions. Although significant improvement over usual journaling techniques, this mechanism has certain drawbacks such as complex protocol and necessity to read whole flash during recovery, which slows down recovery process. In this paper we propose addition of thin journaling layer on top of Transactional Flash to simplify the protocol and speed up the recovery process. The simplified protocol named Quick Recovery Cyclic Commit (QRCC) uses journal stored on NOR flash for recovery. Our evaluations on actual raw flash card show that journal writes add negligible penalty compared to original Transactional Flash's write performance, while quick recovery is facilitated by journal in case of failures.
Resumo:
This paper illustrates a Wavelet Coefficient based approach using experiments to understand the sensitivity of ultrasonic signals due to parametric variation of a crack configuration in a metal plate. A PZT patch sensor/actuator system integrated to a metal plate with through-thickness crack is used. The proposed approach uses piezoelectric patches, which can be used to both actuate and sense the ultrasonic signals. While this approach leads to more flexibility and reduced cost for larger scalability of the sensor/actuator network, the complexity of the signals increases as compared to what is encountered in conventional ultrasonic NDE problems using selective wave modes. A Damage Index (DI) has been introduced, which is function of wavelet coefficient. Experiments have been carried out for various crack sizes, crack orientations and band-limited tone-burst signal through FIR filter. For a 1 cm long crack interrogated with 20 kHz tone-burst signal, the Damage Index (DI) for the horizontal crack orientation increases by about 70% with respect to that for 135 degrees oriented crack and it increases by about 33% with respect to the vertically oriented crack. The detailed results reported in this paper is a step forward to developing computational schemes for parametric identification of damage using sensor/actuator network and ultrasonic wave.
Resumo:
Instrumented microindentation (IM) on two Ni-Ti shape memory alloys (SMAs), where one is austenitic and the other is martensitic at room temperature, were conducted from 40 to 150 degrees C. Results show that the depth and work recovery ratios, eta(d) and eta(w) respectively, are complementary to each other. While eta(d) decreases gradually with temperature for austenite, it drops markedly for the martensite in the martensite-to-austenite transformation regime. These results affirm the utility of IM for characterizing SMAs.
Resumo:
A joint analysis-synthesis framework is developed for the compressive sensing (CS) recovery of speech signals. The signal is assumed to be sparse in the residual domain with the linear prediction filter used as the sparse transformation. Importantly this transform is not known apriori, since estimating the predictor filter requires the knowledge of the signal. Two prediction filters, one comb filter for pitch and another all pole formant filter are needed to induce maximum sparsity. An iterative method is proposed for the estimation of both the prediction filters and the signal itself. Formant prediction filter is used as the synthesis transform, while the pitch filter is used to model the periodicity in the residual excitation signal, in the analysis mode. Significant improvement in the LLR measure is seen over the previously reported formant filter estimation.
Resumo:
Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.
Resumo:
A wave propagation based approach for the detection of damage in components of structures having periodic damage has been proposed. Periodic damage pattern may arise in a structure due to periodicity in geometry and in loading. The method exploits the Block-Floquet band formation mechanism, a feature specific to structures with periodicity, to identify propagation bands (pass bands) and attenuation bands (stop bands) at different frequency ranges. The presence of damage modifies the wave propagation behaviour forming these bands. With proper positioning of sensors a damage force indicator (DFI) method can be used to locate the defect at an accuracy level of sensor to sensor distance. A wide range of transducer frequency may be used to obtain further information about the shape and size of the damage. The methodology is demonstrated using a few 1-D structures with different kinds of periodicity and damage. For this purpose, dynamic stiffness matrix is formed for the periodic elements to obtain the dispersion relationship using frequency domain spectral element and spectral super element method. The sensitivity of the damage force indicator for different types of periodic damages is also analysed.