279 resultados para DIFFUSION MARKER EXPERIMENTS
Resumo:
Sr90 Radiotracer diffusion studies have been carried out on crystals of orthoclase and microcline using an ion implantation method. The activation energies are consistent with calculations based on mineral age data.
Resumo:
Investigations have been carried out of some aspects of the fine-scale structure of turbulence in grid flows, in boundary layers in a zero pressure gradient and in a boundary layer in a strong favourable pressure gradient leading to relaminarization. Using a narrow-band filter with suitable mid-band frequencies, the properties of the fine-scale structure (appearing as high frequency pulses in the filtered signal) were analysed using the variable discriminator level technique employed earlier by Rao, Narasimha & Badri Narayanan (1971). It was found that, irrespective of the type of flow, the characteristic pulse frequency (say Np) defined by Rao et al. was about 0·6 times the frequency of the zero crossings. It was also found that, over the small range of Reynolds numbers tested, the ratio of the width of the fine-scale regions to the Kolmogorov scale increased linearly with Reynolds number in grid turbulence as well as in flat-plate boundarylayer flow. Nearly lognormal distributions were exhibited by this ratio as well as by the interval between successive zero crossings. The values of Np and of the zero-crossing rate were found to be nearly constant across the boundary layer, except towards its outer edge and very near the wall. In the zero-pressure-gradient boundary-layer flow, very near the wall the high frequency pulses were found to occur mostly when the longitudinal velocity fluctuation u was positive (i.e. above the mean), whereas in the outer part of the boundary layer the pulses more often occurred when u was negative. During acceleration this correlation between the fine-scale motion and the sign of u was less marked.
Resumo:
The opposed-jet diffusion flame has been considered with four step reaction kinetics for hydrogenoxygen system. The studies have revealed that the flame broadening reduces and maximum temperature increases as pressure increases. The relative importance of different reaction steps have been brought out in different regions (unstable, near extinction and equilibrium). The present studies have also led to the deduction of the oveall reaction rate constants of an equivalent single step reaction using matching of a certain overall set of parameters for four step reaction scheme and equivalent single step reaction.
Resumo:
Using the critical percolation conductance method the energy-dependent diffusion coefficient associated with thermally assisted transfer of the R1 line excitation between single Cr3+ ions with strain-induced randomness has been calculated in the 4A2 to E(2E) transition energies. For localized states sufficiently far away from the mobility edge the energy transfer is dominated by dipolar interactions, while very close to the mobility edge it is determined by short-range exchange interactions. Using the above energy-dependent diffusion coefficient a macroscopic diffusion equation is solved for the rate of light emission by Cr3+ ion-pair traps to which single-ion excitations are transferred. The dipolar mechanism leads to good agreement with recent measurements of the pair emission rate by Koo et al. (Phys. Rev. Lett., vol.35, p.1669 (1975)) right up to the mobility edge.
Resumo:
The translation elongation factor G (EFG) is encoded by the fusA gene.Several bacteria possess a second fusA-like locus,fusA2 which encodes EFG2. A comparison of EFG and EFG2 from various bacteria reveals that EFG2 preserves domain organization and maintains significant sequence homology with EFG, suggesting that EFG2 may function as an elongation factor. However, with the single exception of a recent study on Thermus thermophilus EFG2, this class of EFG-like factors has not been investigated. Here, we have characterized EFG2 (MSMEG_6535) from Mycobacterium smegmatis. Expression of EFG2 was detected in stationary phase cultures of M.smegmatis (Msm). Our in vitro studies show that while MsmEFG2 binds guanine nucleotides, it lacks the ribosome-dependent GTPase activity characteristic of EFGs. Furthermore,unlike MsmEFG (MSMEG_1400), MsmEFG2 failed to rescue an E. coli strain harboring a temperature-sensitive allele of EFG, for its growth at thenon-permissive temperature. Subsequent experiments showed that the fusA2 gene could be disrupted in M. smegmatis mc(2)155 with Kan(R)marker. The M. smegmatis fusA2::kan strain was viable and showed growth kinetics similar to that of the parent strain (wild-type for fusA2).However, in the growth competition assays, the disruption of fusA2 was found to confer a fitness disadvantage to M. smegmatis, raising the possibility that EFG2 is of some physiological relevance to mycobacteria.
Resumo:
Molecular dynamics simulations are reported on the structure and dynamics of n-decane and 3-methylpentane in zeolite NaY. We have calculated several properties such as the center of mass-center of mass rdf, the end-end distance distribution, bond angle distribution and dihedral angle distribution. We have also analysed trajectory to obtain diffusivity and velocity autocorrelation function (VACF). Surprisingly, the diffusivity of 3-methylpentane which is having larger cross-section perpendicular to the long molecular axis is higher than n-decane at 300 K. Activation energies have been obtained from simulations performed at 200 K, 300 K, 350 K, 400 K and 450 K in the NVE ensemble. These results can be understood in terms of the previously known levitation effect. Arrhenious plot has higher value of slope for n-decane (5 center dot 9 kJ/mol) than 3-methylpentane (3 center dot 7 kJ/mol) in agreement with the prediction of levitation effect.
Resumo:
Ferrous iron bio-oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket-type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet-type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket-type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio-oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
This paper presents the results of a series of servo-controlled cyclic triaxial tests and numerical simulations using the three- dimensional discrete element method (DEM) on post-liquefaction undrained monotonic strength of granular materials. In a first test series,undrained monotonic tests were carried out after dissipating the excess pore water pressure developed during liquefaction. The influence of different parameters such as amplitude of axial strain,relative density and confining pressure prior to liquefaction on the post-liquefaction undrained response have been investigated.The results obtained highlight an insignificant influence of amplitude of axial strain, confining pressure and a significant influence of relative density on the post-liquefaction undrained monotonic stress-strain response.In the second series, undrained monotonic tests were carried out on similar triaxial samples without dissipating the excess pore water pressure developed during liquefaction. The results highlight that the amplitude of axial strain prior to liquefaction has a significant influence on the post-liquefaction undrained monotonic response.In addition,DEM simulations have been carried out on an assembly of spheres to simulate post-liquefaction behaviour.The simulations were very similar to the experiments with an objective to understand the behaviour of monotonic strength of liquefied samples from the grain scale. The numerical simulations using DEM have captured qualitatively all the features of the post-liquefaction undrained monotonic response in a manner similar to that of the experiments.In addition,a detailed study on the evolution of micromechanical parameters such as the average coordination number and induced anisotropic coefficients has been reported during the post-liquefaction undrained monotonic loading.
Resumo:
Silica segregation at two grain junctions or in amorphous triple junction pockets can influence creep by altering the grain-boundary diffusion coefficient. Although the addition of silica to superplastic yttria-stabilized tetragonal zirconia enhances ductility, differences in reported creep parameters have limited critical identification of rate controlling mechanisms. The present study on a pure 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) and 3YTZ with 0.39 or 3.9 wt% silica involved a detailed characterization of creep over a wide range of experimental conditions and also tracer diffusion measurements. The data broadly show transitions in creep stress exponents from n∼1 to ∼2 to ∼3 with a decrease in the stress. The data at high stresses are consistent with Coble diffusion creep, and creep at lower stresses is attributed to interface-controlled diffusion creep. Measurements indicated that silica does not have any significant influence on grain boundary or lattice diffusion, and this is consistent with the observation that 3YTZ and 3YTZ with 0.39% or 3.9% silica exhibit essentially identical creep behavior in the Coble creep regime. Silica influences the interface control process so that the transitions in stress exponents are pushed to lower stresses with an increase in silica content.
Resumo:
The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.
Resumo:
Batch adsorption of fluoride onto manganese dioxide-coated activated alumina (MCAA) has been studied. Adsorption experiments were carried out at various pH (3–9), time interval (0–6 h), adsorbent dose (1–16 g/l), initial fluoride concentration (1–25 mg/l) and in the presence of different anions. Adsorption isotherms have been modeled using Freundlich, Langmuir and Dubinin–Raduskevich isotherms and adsorption followed Langmuir isotherm model. Kinetic studies revealed that the adsorption followed second-order rate kinetics. MCAA could remove fluoride effectively (up to 0.2 mg/l) at pH 7 in 3 h with 8 g/l adsorbent dose when 10 mg/l of fluoride was present in 50 ml of water. In the presence of other anions, the adsorption of fluoride was retared. The mechanism of fluoride uptake by MCAA is due to physical adsorption as well as through intraparticle diffusion which was confirmed by kinetics, Dubinin–Raduskevich isotherm, zeta-potential measurements and mapping studies of energy-dispersive analysis of X-ray.
Resumo:
Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.
Resumo:
The gas-diffusion layer (GDL) influences the performance of electrodes employed with polymer electrolyte fuel cells (PEFCs). A simple and effective method for incorporating a porous structure in the electrode GDL using sucrose as the pore former is reported. Optimal (50 w/o) incorporation of a pore former in the electrode GDL facilitates the access of the gaseous reactants to the catalyst sites and improves the fuel cell performance. Data obtained from permeability and porosity measurements, single-cell performance, and impedance spectroscopy suggest that an optimal porosity helps mitigating mass-polarization losses in the fuel cell resulting in a substantially enhanced performance.
Resumo:
Alum-impregnated activated alumina (AIAA) was investigated in the present work as an adsorbent for the removal of As(V) from water by batch mode. Adsorption study at different pH values shows that the efficiency of AIAA is much higher than as such activated alumina and is suitable for treatment of drinking water. The adsorption isotherm experiments indicated that the uptake of As(V) increased with increasing As(V) concentration from 1 to 25 mg/l and followed Langmuir-type adsorption isotherm. Speciation diagram shows that in the pH range of 2.8–11.5, arsenate predominantly exists as H2AsO4− and HAsO42− species and hence it is presumed that these are the major species being adsorbed on the surface of AIAA. Intraparticle diffusion and kinetic studies revealed that adsorption of As(V) was due to physical adsorption as well as through intraparticle diffusion. Effect of interfering ions revealed that As(V) sorption is strongly influenced by the presence of phosphate ion. The presence of arsenic on AIAA is depicted from zeta potential measurement, scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping study. Alum-impregnated activated alumina successfully removed As(V) to below 40 ppb (within the permissible limit set by WHO) from water, when the initial concentration of As(V) is 10 mg/l.