311 resultados para DIAMETER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the experimental and modeling studies on the smoldering rates of incense sticks as a function of ambient oxygen fraction in air, the flow velocity and size. The experimental results are obtained both for forward and reverse smolder conditions. The results are explained on the basis of surface combustion due to diffusion of oxygen to the surface by both free and forced convection supporting the heat transfer into the solid by conduction, into the stream by convection and the radiant heat transfer from the surface. The heat release at the surface is controlled by the convective transport of the oxidizer to the surface. To obtain the diffusion rates particularly for the reverse smolder, CFD calculations of fluid flow with along with a passive scalar are needed; these calculations have been made both for forward and reverse smolder. The interesting aspect of the CFD calculations is that while the Nusselt umber for forward smolder shows a clear root( Re-u) dependence ( Re-u = Flow Reynolds Number), the result for reverse smolder shows a peak in the variation with Reynolds number with the values lower than for forward smolder and unsteadiness in the flow beyond a certain flow rate. The results of flow behavior and Nusselt number are used in a simple model for the heat transfer at the smoldering surface to obtain the dependence of the smoldering rate on the diameter of the incense stick, the flow rate of air and the oxygen fraction. The results are presented in terms of a correlation for the non-dimensional smoldering rate with radiant flux from the surface and heat generation rate at the surface. The correlations appear reasonable for both forward and reverse smolder cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bubble formation under constant pressure conditions has been investigated for wide range of variation of liquid properties.Air bubbles were formed from single horizontal orifices submerged in liquids whose viscosity varied from 1·0 to 600 cPs and surface tension from 37 to 72 dyn/cm. Air flow rate was varied from 2 to 250 cm3/sec and the orifice diameter from 0·0515 to 0·4050 cm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inertial impaction of Lycopodium spores on single wires lying transverse to the direction of flow has been studied. The equations of particle motion in a potential flow field have been modified for the case when Stokes' law is inapplicable. Solutions to the above equations have been obtained by digital computation. Rec, the Reynolds number based on cylinder diameter, varied from 4 to 240; particle trajectories in a flow field at Rec = 10 have been determined for inertia parameter K = 1, 2, 4, 6, and 10. Ten trajectories were developed for the above cases by the numerical stepwise method. Experiments were performed by depositing Lycopodium spores on adhesive-coated wires of various diameters and at different velocities. The weight of dust deposited was determined with a microbalance. The experimental conditions were:. Wire diameters: 345, 457, 1500 μ. Particle diameter: 35 μ. Air velocities: 20-250 cm/sec. Inertia parameter: 1-60. The particle was considered as a point mass in the theoretical analysis. But in the experiments the ratio of particle size to wire size was not negligible (rp/rc = 0·1) and hence the effect of finite size of particle on collection efficiency due to the direct interception effect has been estimated. The effect of particle size distribution on collection efficiency has also been estimated. The experimental efficiencies obtained compare well with the calculated efficiencies at Rec = 10 when direct interception is taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime.Activation energy is in the order E-a(n-pentane)>E-a(isopentane)>E-a(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen thatD(n pentane)>D(isopentane)>D(neopentane) and E-a(n-pentane)< E-a(isopentane)< E-a(neopentane). Intermediate scattering function for small wavenumbers obtained from MD follows a single exponential decay for neopentane and isopentane. For n-pentane, a single exponential fit provides a poor fit especially at short times. Cage residence time is largest for n-pentane and lowest for neopentane. For neopentane, the width of the self-part of the dynamic structure factor shows a near monotonic decrease with wavenumber. For n-pentane a minimum is seen near k=0.5 A degrees(-1) suggesting a slowing down of motion around the 12-ring window, the bottleneck for diffusion. Finally, the result that the branched isomer has a higher diffusivity as compared with the linear analog is at variation from what is normally seen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the growth kinetics of CdS nanocrystals in the quantum confinement regime using time-resolved small-angle X-ray scattering. In contrast to earlier reports for similar systems, we establish that the growth kinetics in this case follows the Lifshitz-Slyozov-Wagner theory, for not only growth of the average diameter of the nanocrystals but also the time dependence of the size distribution and the temperature dependence of the rate constant. This is the first rigorous example of the coarsening process in the quantum confinement (< 5 nm)regime. Ab initio studies for the reaction pathways provide a microscopic understanding of this finding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis, characterization and photophysical properties of a 4f-3d mixed metal compound, Gd(H2O)(3)Co[C5N1H3-(COO)(2)](3), are described; the structure is unique, consisting of sheets with large pores ( ca. 7 angstrom diameter) in the sheets and transforms to a perovskite oxide at moderate temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benzene drops were formed in continuous media of water and glycerine of varying physical properties. The effect on drop volumes of variables like volumetric flow-rate, interfacial tension, continuous phase viscosity and capillary diameter was studied. An equation has been developed, based on a two stage drop formation mechanism, which predicts drop volumes within an average error of 7 per cent for the range of physical properties employed in this investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-dimensional exact solution for determining the thermal stresses in a finite hollow cylinder subject to a steady state axisymmetric temperature field over one of its end surfaces has been given. Numerical results for a hollow cylinder, having lenght to outer diameter ratio equal to one and inner to outer diameter ratio equal to 0.75, subjected to a symmetric temperature variation over the end surfaces of the cylinder have been given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-dimensional rigorous solution for determining thermal stresses in a finite solid cylinder due to a steady state axisymmetric temperature field over one of its end surfaces is given. Numerical results for a solid cylinder having a length to diameter ratio equal to one and subjected to a symmetric temperature variation over half the radius of the cylinder at the end surfaces are included. These results have been compared with the results of the approximate solution given by W. Nowacki.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature-time characteristics of tungsten filaments heated electrically under constant voltage in vacuum have been analysed. The analysis is carried out over the temperature range 300-2500°K, taking into account the actual variations with temperature of the various parameters involved, as reported by Jones and Langmuir (1927). The analysis leads to the conclusion that the temperature-time relationship is exponential throughout the range. The time constant is shown to be proportional to the diameter of the filament and T f-4.2 where Tf is the final temperature of the filament. The results of the analysis are applied to derive the voltage variations (continuous and discrete types) required to keep the transient current within specified limits during the rapid switching on of filaments as met with in high power thermionic valves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of vibration on heat transfer from a horizontal copper cylinder, 0.344 in. in diameter and 6 in. long, was investigated. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the direction of the air stream. The flow velocity varied from 19 ft/s to 92 ft/s; the double amplitude of vibration from 0.75 cm to 3.2 cm, and the frequency of vibration from 200 to 2800 cycles/min. A transient technique was used to determine the heat transfer coefficients. The experimental data in the absence of vibration is expressed by NNu = 0.226 NRe0.6 in the range 2500 < NRe < 15 000. By imposing vibrational velocities as high as 20 per cent of the flow velocity, no appreciable change in the heat transfer coefficient was observed. An analysis using the resultant of the vibration and the flow velocity explains the observed phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite circular cylindrical shell subjected to a band of uniform pressure on its outer rim was investigated, using three-dimensional elasticity theory and the classical shell theories of Timoshenko (or Donnell) and Flügge. Detailed comparison of the resulting stresses and displacements was carried out for shells with ratios of inner to outer shell radii equal to 0.80, 0.85, 0.90 and 0.93 and for ratios of outer shell diameter to length of the shell equal to 0.5, 1 and 2. The ratio of band width to length of the shell was 0.2 and Poisson's ratio used was equal to 0.3. An Elliot 803 digital computer was used for numerical computations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a nuclear magnetic resonance (NMR) study of confined water inside similar to 1.4 nm diameter single-walled carbon nanotubes (SWNTs). We show that the confined water does not freeze even up to 223 K. A pulse field gradient (PFG) NMR method is used to determine the mean squared displacement (MSD) of the water molecules inside the nanotubes at temperatures below 273 K, where the bulk water outside the nanotubes freezes and hence does not contribute to the proton NMR signal. We show that the mean squared displacement varies as the square root of time, predicted for single-file diffusion in a one-dimensional channel. We propose a qualitative understanding of our results based on available molecular dynamics simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dry sliding wear behavior of die-cast ADC12 aluminum alloy composites reinforced with short alumina fibers were investigated by using a pin-on-disk wear tester. The Al2O3 fibers were 4 mu m in diameter and were present in volume fractions (T-f)ranging from 0.03 to 0.26, The length of the fiber varied from 40 to 200 mu m. Disks of aluminum-alumina composites were rubbed against a pin of nitrided stainless steel SUS440B with a load of 10 N at a sliding velocity of 0.1 m/s. The unreinforced ADC 12 aluminum alloy and their composites containing low volume fractions of alumina (V-f approximate to 0.05) showed a sliding-distance-dependent transition from severe to mild wear. However, composites containing high volume fractions of alumina ( V-f > 0.05) exhibited only mild wear for all sliding distances. The duration of occurrence of the severe wear regime and the wear rate both decrease with increasing volume fraction. In MMCs the wear rate in the mild wear regime decreases with increase in volume fraction: reaching a minimum value at V-f = 0.09 Beyond V-f = 0.09 the wear rate increasesmarginally. On the other hand, the wear rate of the counterface (steel pin) was found to increase moderately with increase in V-f. From the analysis of wear data and detailed examination of (a) worn surfaces, (b) their cross-sections and (c) wear debris, two modes of wear mechanisms have been identified to be operative, in these materials and these are: (i) adhesive wear in the case of unreinforced matrix material and in MMCs with low Vf and (ii) abrasive wear in the case of MMCs with high V-f. (C) 2000 Elsevier Science Ltd. All rights reserved.