154 resultados para Critical Sobolev Exponent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coalescence processes are investigated during phase separation in a density-matched liquid mixture (partially deuterated cyclohexane and methanol) under near-critical conditions. As a result of the interplay between capillary and lubrication forces, ''nose'' coalescence appears to be always associated with the slow growth of isolated droplets (exponent almost-equal-to 1/3), whereas ''dimple'' coalescence corresponds to the fast growth of interconnected droplets (exponent almost-equal-to 1). At each stage of growth, the distribution of droplets trapped during dimple coalescence is reminiscent of all of the previous coalescence events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase separation in fluids close to a critical point can be observed in the form of either an interconnected pattern (critical case) or a disconnected pattern (off-critical case). These two regimes have been investigated in different ways. First, a sharp change in pattern is shown to occur very close to the critical point when the composition is varied. No crossover has been observed between the t1 behaviour (interconnected) and a t1/3 behaviour (disconnected), where t is time. This latter growth law, which occurs in the case of compact droplets, will be discussed. Second, it has been observed that a growing interconnected pattern leaves a signature in the form of small droplets. The origin of such a distribution will be discussed in terms of coalescence of domains. No distribution of this kind is observed in the off-critical case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three independent studies have been reported on the free energy of formation of NiWO4. Results of these measurements are analyzed by the �third-law� method, using thermal functions for NiWO4 derived from both low and high temperature heat capacity measurements. Values for the standard molar enthalpy of formation of NiWO4 at 298·15 K obtained from �third-law� analysis are compared with direct calorimetric determinations. Only one set of free energy measurements is found to be compatible with calorimetric enthalpies of formation. The selected value for ?f H m 0 (NiWO4, cr, 298·15 K) is the average of the three calorimetric measurements, using both high temperature solution and combustion techniques, and the compatible free energy determination. A new set of evaluated data for NiWO4 is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive study of magnetoresistance (MR) of the crystalline pseudobinary ?-phase Fe alloy series FexNi80-xCr20 (50?x?66). This alloy series shows exotic magnetic phases as the composition (x) is varied. It has a critical composition for ferromagnetism at x=xc?59�60. MR was measured in the temperature range 1.7�110 K and up to a field of 7 T. The observed MR was small and the change was ?1%. The temperature dependence of MR was found to contain a positive and a negative contribution. The positive term was found to be ?H2 and it dominates at high field and high temperatures. We explain this as a manifestation of Kohler�s rule. The negative MR was found to have a quadratic dependence on magnetization M. The magnitude of the negative MR reaches a maximum as x?xc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the critical budding temperature of single-walled carbon nanotubes (SWCNTs), which are embedded in one-parameter elastic medium (Winkler foundation) is estimated under the umbrella of continuum mechanics theory. Nonlocal continuum theory is incorporated into Timoshenko beam model and the governing differential equations of motion are derived. An explicit expression for the non-dimensional critical buckling temperature is also derived in this work. The effect of the nonlocal small scale coefficient, the Winkler foundation parameter and the ratio of the length to the diameter on the critical buckling temperature is investigated in detail. It can be observed that the effects of nonlocal small scale parameter and the Winkler foundation parameter are significant and should be considered for thermal analysis of SWCNTs. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of embedded single-walled carbon nanotubes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic older parameter is studied as a function of temperature near the dynamic transition point. The temperature variation of appropriately defined ''susceptibility'' is also studied near the dynamic transition point. Similarly, the fluctuation of energy and appropriately defined ''specific heat'' is studied as a function of temperature near the dynamic transition point. In both cases, the fluctuations (of dynamic order parameter and energy) and the corresponding responses diverge (in power law fashion) near the dynamic transition point with similar critical behavior (with identical exponent values).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the effect of substitution of water by heavy water in a polymer solution of polystyrene (molecular weight = 13000) and acetone. A critical double point (CDP), at which the upper and the lower partially-miscible regions merge, occurs at nearly the same coordinates as for the system [polystyrene + acetone + water]. The shape of the critical line for [polystyrene + acetone + heavy water] is highly asymmetric. An explanation for the occurrence of the water-induced CDP in [polystyrene + acetone] is advanced in terms of the interplay between contact energy dissimilarity and free-volume disparity of the polymer and the solvent. The question of the possible existence of a one-phase hole in an hourglass phase diagram is addressed in [polystyrene + acetone + water]. Our data exclude such a possibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a combination of a logarithmic spiral and a straight line as a failure surface, comprehensive charts have been developed to determine the passive earth pressure coefficients and the positions of the critical failure surface for positive as well as negative wall friction angles. Translational movement of the wall has been examined in detail, considering the soil as either an associated flow dilatant material or a non-dilatant material, to determine the kinematic admissibility of the limit equilibrium solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the exclusion limits set by the CDF and D0 experiments on the Standard Model Higgs boson mass from their searches at the Tevatron in the light of large theoretical uncertainties on the signal and background cross sections. We show that when these uncertainties are consistently taken into account, the sensitivity of the experiments becomes significantly lower and the currently excluded mass range M-H = 158-175 GeV could be entirely reopened. The necessary luminosity required to recover the current sensitivity is found to be a factor of two higher than the present one. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results of statistical and dynamic analysis of the serrated stress-time curves obtained from compressive constant strain-rate tests on two metallic glass samples with different ductility levels in an effort to extract hidden information in the seemingly irregular serrations. Two distinct types of dynamics are detected in these two alloy samples. The stress-strain curve corresponding to the less ductile Zr65Cu15Ni10Al10 alloy is shown to exhibit a finite correlation dimension and a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. In contrast, for the more ductile Cu47.5Zr47.5Al5 alloy, the distributions of stress drop magnitudes and their time durations obey a power-law scaling reminiscent of a self-organized critical state. The exponents also satisfy the scaling relation compatible with self-organized criticality. Possible physical mechanisms contributing to the two distinct dynamic regimes are discussed by drawing on the analogy with the serrated yielding of crystalline samples. The analysis, together with some physical reasoning, suggests that plasticity in the less ductile sample can be attributed to stick-slip of a single shear band, while that of the more ductile sample could be attributed to the simultaneous nucleation of a large number of shear bands and their mutual interactions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational phase relaxation near gas-liquid and liquid-solid phase coexistence has been studied by molecular dynamics simulations of N-N stretch in N-2. Experimentally observed pronounced insensitivity of phase relaxation from the triple point to beyond the boiling point is found to originate from a competition between density relaxation and resonant-energy transfer terms. The sharp rise in relaxation rate near the critical point (CP) can be attributed at least partly to the sharp, rise in vibration-rotation coupling contribution. Substantial subquadratic quantum number dependence of overtone dephasing rate is found near the CP and in supercritical fluids. [S0031-9007 (99)09318-7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element analyses of a long hollow cylinder having an axisymmetric circumferential internal edge crack, subjected to convective cooling on the inner surface are performed. The transient thermal stress intensity factor is estimated using a domain version of the J-integral method. The effect of the thickness of the cylinder, crack length, and heat transfer coefficient on the stress intensity factor history are studied. The variations of critical normalized stress intensity factor with crack length-to-thickness ratio for different parameters are presented. The results show that if a small inner surface crack begins to grow, its stress intensity factor will increase with increase in crack length, reach a maximum, and then begin to drop. Based on the results, a fracture-based design methodology for cracked hollow pipes under transient thermal loads is discussed.