232 resultados para Contravariantly finite subcategories
Resumo:
This report contains the details of the development of the stiffness matrix for a rectangular laminated anisotropic shallow thin shell finite element. The derivation is done under linear thin shell assumptions. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first-order Hermite interpolation polynomials, it is possible to insure that the displacement state for the assembled set of such elements, to be geometrically admissible. Monotonic convergence of the total potential energy is therefore possible as the modelling is successively refined. The element is systematically evaluated for its performance considering various examples for which analytical or other solutions are available
Resumo:
We study charge pumping when a combination of static potentials and potentials oscillating with a time period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides which are at the same chemical potential and temperature. We consider a model in which oscillating potentials help the electrons to access a transmission resonance produced by the static potentials and show that nonadiabatic pumping violates the simple sin phi rule which is obeyed by adiabatic two-site pumping. For the ring, we do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite time using the time evolution operator U(T) assuming a purely Hamiltonian evolution. We analytically show that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies indicate another interesting result, namely, that the integrated current is zero for any time dependence of the potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at resonant and nonresonant frequencies, and show that the pumped current has different dependences on the pumping amplitude in the two cases.
Resumo:
A finite-field method for calculating exact polarizabilities of correlated conjugated model systems within the valence bond (VB) framework is presented. The correlations reduce the polarizabilities from their noninteracting values and extend the range of linearity to higher external fields. The large nonlinear polarizabilities observed in strongly correlated conjugated organic molecules cannot be directly attributed to electron correlations. The method described can be employed to calculate static polarizabilities for any desired state of a correlated system.
Resumo:
A numerical integration procedure for rotational motion using a rotation vector parametrization is explored from an engineering perspective by using rudimentary vector analysis. The incremental rotation vector, angular velocity and acceleration correspond to different tangent spaces of the rotation manifold at different times and have a non-vectorial character. We rewrite the equation of motion in terms of vectors lying in the same tangent space, facilitating vector space operations consistent with the underlying geometric structure. While any integration algorithm (that works within a vector space setting) may be used, we presently employ a family of explicit Runge-Kutta algorithms to solve this equation. While this work is primarily motivated out of a need for highly accurate numerical solutions of dissipative rotational systems of engineering interest, we also compare the numerical performance of the present scheme with some of the invariant preserving schemes, namely ALGO-C1, STW, LIEMIDEA] and SUBCYC-M. Numerical results show better local accuracy via the present approach vis-a-vis the preserving algorithms. It is also noted that the preserving algorithms do not simultaneously preserve all constants of motion. We incorporate adaptive time-stepping within the present scheme and this in turn enables still higher accuracy and a `near preservation' of constants of motion over significantly longer intervals. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Copper strips of 2.5 mm thickness resting on stainless steel anvils were normally indented by wedges under nominal plane strain conditions. Inflections in the hardness-penetration characteristics were identified. Inflections separate stages where each stage has typical mechanics of deformation. These are arrived at by studying the distortion of 0.125 mm spaced grids inscribed on the deformation plane of the strip. The sensitivity of hardness and deformation mechanics to wedge angle and the interfacial friction between strip and anvil were investigated within the framework of existing slip line field models of indentation of semi-infinite and finite blocks.
Resumo:
The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials There is thus a case for combining these advantages in a so-called hybrid scheme or a `smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform C-p (p >= 1) continuity One such recent attempt, a NURBS based parametric bridging method (Shaw et al 2008b), uses polynomial reproducing, tensor-product non-uniform rational B-splines (NURBS) over a typical FE mesh and relies upon a (possibly piecewise) bijective geometric map between the physical domain and a rectangular (cuboidal) parametric domain The present work aims at a significant extension and improvement of this concept by replacing NURBS with DMS-splines (say, of degree n > 0) that are defined over triangles and provide Cn-1 continuity across the triangle edges This relieves the need for a geometric map that could precipitate ill-conditioning of the discretized equations Delaunay triangulation is used to discretize the physical domain and shape functions are constructed via the polynomial reproduction condition, which quite remarkably relieves the solution of its sensitive dependence on the selected knotsets Derivatives of shape functions are also constructed based on the principle of reproduction of derivatives of polynomials (Shaw and Roy 2008a) Within the present scheme, the triangles also serve as background integration cells in weak formulations thereby overcoming non-conformability issues Numerical examples involving the evaluation of derivatives of targeted functions up to the fourth order and applications of the method to a few boundary value problems of general interest in solid mechanics over (non-simply connected) bounded domains in 2D are presented towards the end of the paper
Resumo:
A new super convergent sandwich beam finite element formulation is presented in this article. This element is a two-nodded, six degrees of freedom (dof) per node (3 dof u(0), w, phi for top and bottom face sheets each), which assumes that all the axial and flexural loads are taken by face sheets, while the core takes only the shear loads. The beam element is formulated based on first-order shear deformation theory for the face sheets and the core displacements are assumed to vary linearly across the thickness. A number of numerical experiments involving static, free vibration, and wave propagation analysis examples are solved with an aim to show the super convergent property of the formulated element. The examples presented in this article consider both metallic and composite face sheets. The formulated element is verified in most cases with the results available in the published literature.
Resumo:
In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.
Resumo:
Accurate, reliable and economical methods of determining stress distributions are important for fastener joints. In the past the contact stress problems in these mechanically fastened joints using interference or push or clearance fit pins were solved using both inverse and iterative techniques. Inverse techniques were found to be most efficient, but at times inadequate in the presence of asymmetries. Iterative techniques based on the finite element method of analysis have wider applications, but they have the major drawbacks of being expensive and time-consuming. In this paper an improved finite element technique for iteration is presented to overcome these drawbacks. The improved iterative technique employs a frontal solver for elimination of variables not requiring iteration, by creation of a dummy element. This automatically results in a large reduction in computer time and in the size of the problem to be handled during iteration. Numerical results are compared with those available in the literature. The method is used to study an eccentrically located pin in a quasi-isotropic laminated plate under uniform tension.
Resumo:
Resonant sound absorbers are used widely as anechoic coatings in underwater applications. In this paper a finite element scheme based on the Galerkin technique is used to analyze the reflection characteristics of the resonant absorber when insonified by a normal incidence plane wave. A waveguide theory coupled with an impedance matching condition in the fluid is used to model the problem. It is shown in this paper that the fluid medium encompassing the absorber can be modeled as an elastic medium with equivalent Lamé constants. Quarter symmetry conditions within the periodic unit cell are exploited. The finite element results are compared with analytical results, and with results published elsewhere in the literature. It is shown in the process that meshing of the fluid domain can be obviated if the transmission coefficients or reflection coefficients only are desired as is often the case. Finally, some design curves for thin resonant absorbers with water closure are presented in this paper.
Resumo:
We investigate an optical waveguide system consisting of an unclad fiber core suspended at a constant distance parallel to the surface of a planar waveguide. The coupling and propagation of light in the combined system is studied using the three-dimensional explicit finite difference beam propagation method with a nonuniform mesh configuration. The power loss in the fiber and the field distribution in the waveguide are studied as a function of various parameters, such as index changes, index profile, and propagation distance, for the combined system.