125 resultados para Conference Graph
Resumo:
Problems related to network coding for acyclic, instantaneous networks (where the edges of the acyclic graph representing the network are assumed to have zero-delay) have been extensively dealt with in the recent past. The most prominent of these problems include (a) the existence of network codes that achieve maximum rate of transmission, (b) efficient network code constructions, and (c) field size issues. In practice, however, networks have transmission delays. In network coding theory, such networks with transmission delays are generally abstracted by assuming that their edges have integer delays. Using enough memory at the nodes of an acyclic network with integer delays can effectively simulate instantaneous behavior, which is probably why only acyclic instantaneous networks have been primarily focused on thus far. However, nulling the effect of the network delays are not always uniformly advantageous, as we will show in this work. Essentially, we elaborate on issues ((a), (b) and (c) above) related to network coding for acyclic networks with integer delays, and show that using the delay network as is (without adding memory) turns out to be advantageous, disadvantageous or immaterial, depending on the topology of the network and the problem considered i.e., (a), (b) or (c).
Resumo:
In this paper we approach the problem of computing the characteristic polynomial of a matrix from the combinatorial viewpoint. We present several combinatorial characterizations of the coefficients of the characteristic polynomial, in terms of walks and closed walks of different kinds in the underlying graph. We develop algorithms based on these characterizations, and show that they tally with well-known algorithms arrived at independently from considerations in linear algebra.
Resumo:
The rainbow connection number of a connected graph is the minimum number of colors needed to color its edges, so that every pair of its vertices is connected by at least one path in which no two edges are colored the same. In this article we show that for every connected graph on n vertices with minimum degree delta, the rainbow connection number is upper bounded by 3n/(delta + 1) + 3. This solves an open problem from Schiermeyer (Combinatorial Algorithms, Springer, Berlin/Hiedelberg, 2009, pp. 432437), improving the previously best known bound of 20n/delta (J Graph Theory 63 (2010), 185191). This bound is tight up to additive factors by a construction mentioned in Caro et al. (Electr J Combin 15(R57) (2008), 1). As an intermediate step we obtain an upper bound of 3n/(delta + 1) - 2 on the size of a connected two-step dominating set in a connected graph of order n and minimum degree d. This bound is tight up to an additive constant of 2. This result may be of independent interest. We also show that for every connected graph G with minimum degree at least 2, the rainbow connection number, rc(G), is upper bounded by Gc(G) + 2, where Gc(G) is the connected domination number of G. Bounds of the form diameter(G)?rc(G)?diameter(G) + c, 1?c?4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree delta at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G)?3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds.
Resumo:
Researchers can use bond graph modeling, a tool that takes into account the energy conservation principle, to accurately assess the dynamic behavior of wireless sensor networks on a continuous basis.
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes in a region of Euclidean space. Following deployment, the nodes self-organize into a mesh topology with a key aspect being self-localization. Having obtained a mesh topology in a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this work, we analyze this approximation through two complementary analyses. We assume that the mesh topology is a random geometric graph on the nodes; and that some nodes are designated as anchors with known locations. First, we obtain high probability bounds on the Euclidean distances of all nodes that are h hops away from a fixed anchor node. In the second analysis, we provide a heuristic argument that leads to a direct approximation for the density function of the Euclidean distance between two nodes that are separated by a hop distance h. This approximation is shown, through simulation, to very closely match the true density function. Localization algorithms that draw upon the preceding analyses are then proposed and shown to perform better than some of the well-known algorithms present in the literature. Belief-propagation-based message-passing is then used to further enhance the performance of the proposed localization algorithms. To our knowledge, this is the first usage of message-passing for hop-count-based self-localization.
Resumo:
In this paper, we consider low-complexity turbo equalization for multiple-input multiple-output (MIMO) cyclic prefixed single carrier (CPSC) systems in MIMO inter-symbol interference (ISI) channels characterized by large delay spreads. A low-complexity graph based equalization is carried out in the frequency domain. Because of the reduction in correlation among the noise samples that happens for large frame sizes and delay spreads in frequency domain processing, improved performance compared to time domain processing is shown to be achieved. This improved performance is attractive for equalization in severely delay spread ISI channels like ultrawideband channels and underwater acoustic channels.
Resumo:
Low density parity-check (LDPC) codes are a class of linear block codes that are decoded by running belief propagation (BP) algorithm or log-likelihood ratio belief propagation (LLR-BP) over the factor graph of the code. One of the disadvantages of LDPC codes is the onset of an error floor at high values of signal to noise ratio caused by trapping sets. In this paper, we propose a two stage decoder to deal with different types of trapping sets. Oscillating trapping sets are taken care by the first stage of the decoder and the elementary trapping sets are handled by the second stage of the decoder. Simulation results on the regular PEG (504,252,3,6) code and the irregular PEG (1024,518,15,8) code shows that the proposed two stage decoder performs significantly better than the standard decoder.
Resumo:
Points-to analysis is a key compiler analysis. Several memory related optimizations use points-to information to improve their effectiveness. Points-to analysis is performed by building a constraint graph of pointer variables and dynamically updating it to propagate more and more points-to information across its subset edges. So far, the structure of the constraint graph has been only trivially exploited for efficient propagation of information, e.g., in identifying cyclic components or to propagate information in topological order. We perform a careful study of its structure and propose a new inclusion-based flow-insensitive context-sensitive points-to analysis algorithm based on the notion of dominant pointers. We also propose a new kind of pointer-equivalence based on dominant pointers which provides significantly more opportunities for reducing the number of pointers tracked during the analysis. Based on this hitherto unexplored form of pointer-equivalence, we develop a new context-sensitive flow-insensitive points-to analysis algorithm which uses incremental dominator update to efficiently compute points-to information. Using a large suite of programs consisting of SPEC 2000 benchmarks and five large open source programs we show that our points-to analysis is 88% faster than BDD-based Lazy Cycle Detection and 2x faster than Deep Propagation. We argue that our approach of detecting dominator-based pointer-equivalence is a key to improve points-to analysis efficiency.
Resumo:
Pervasive use of pointers in large-scale real-world applications continues to make points-to analysis an important optimization-enabler. Rapid growth of software systems demands a scalable pointer analysis algorithm. A typical inclusion-based points-to analysis iteratively evaluates constraints and computes a points-to solution until a fixpoint. In each iteration, (i) points-to information is propagated across directed edges in a constraint graph G and (ii) more edges are added by processing the points-to constraints. We observe that prioritizing the order in which the information is processed within each of the above two steps can lead to efficient execution of the points-to analysis. While earlier work in the literature focuses only on the propagation order, we argue that the other dimension, that is, prioritizing the constraint processing, can lead to even higher improvements on how fast the fixpoint of the points-to algorithm is reached. This becomes especially important as we prove that finding an optimal sequence for processing the points-to constraints is NP-Complete. The prioritization scheme proposed in this paper is general enough to be applied to any of the existing points-to analyses. Using the prioritization framework developed in this paper, we implement prioritized versions of Andersen's analysis, Deep Propagation, Hardekopf and Lin's Lazy Cycle Detection and Bloom Filter based points-to analysis. In each case, we report significant improvements in the analysis times (33%, 47%, 44%, 20% respectively) as well as the memory requirements for a large suite of programs, including SPEC 2000 benchmarks and five large open source programs.
Resumo:
The n-interior point variant of the Erdos-Szekeres problem is to show the following: For any n, n-1, every point set in the plane with sufficient number of interior points contains a convex polygon containing exactly n-interior points. This has been proved only for n-3. In this paper, we prove it for pointsets having atmost logarithmic number of convex layers. We also show that any pointset containing atleast n interior points, there exists a 2-convex polygon that contains exactly n-interior points.
Resumo:
In many real world prediction problems the output is a structured object like a sequence or a tree or a graph. Such problems range from natural language processing to compu- tational biology or computer vision and have been tackled using algorithms, referred to as structured output learning algorithms. We consider the problem of structured classifi- cation. In the last few years, large margin classifiers like sup-port vector machines (SVMs) have shown much promise for structured output learning. The related optimization prob -lem is a convex quadratic program (QP) with a large num-ber of constraints, which makes the problem intractable for large data sets. This paper proposes a fast sequential dual method (SDM) for structural SVMs. The method makes re-peated passes over the training set and optimizes the dual variables associated with one example at a time. The use of additional heuristics makes the proposed method more efficient. We present an extensive empirical evaluation of the proposed method on several sequence learning problems.Our experiments on large data sets demonstrate that the proposed method is an order of magnitude faster than state of the art methods like cutting-plane method and stochastic gradient descent method (SGD). Further, SDM reaches steady state generalization performance faster than the SGD method. The proposed SDM is thus a useful alternative for large scale structured output learning.
Resumo:
In this paper, we develop a game theoretic approach for clustering features in a learning problem. Feature clustering can serve as an important preprocessing step in many problems such as feature selection, dimensionality reduction, etc. In this approach, we view features as rational players of a coalitional game where they form coalitions (or clusters) among themselves in order to maximize their individual payoffs. We show how Nash Stable Partition (NSP), a well known concept in the coalitional game theory, provides a natural way of clustering features. Through this approach, one can obtain some desirable properties of the clusters by choosing appropriate payoff functions. For a small number of features, the NSP based clustering can be found by solving an integer linear program (ILP). However, for large number of features, the ILP based approach does not scale well and hence we propose a hierarchical approach. Interestingly, a key result that we prove on the equivalence between a k-size NSP of a coalitional game and minimum k-cut of an appropriately constructed graph comes in handy for large scale problems. In this paper, we use feature selection problem (in a classification setting) as a running example to illustrate our approach. We conduct experiments to illustrate the efficacy of our approach.
Resumo:
Boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional axis parallel boxes in Rk. Equivalently, it is the minimum number of interval graphs on the vertex set V such that the intersection of their edge sets is E. It is known that boxicity cannot be approximated even for graph classes like bipartite, co-bipartite and split graphs below O(n0.5-ε)-factor, for any ε > 0 in polynomial time unless NP = ZPP. Till date, there is no well known graph class of unbounded boxicity for which even an nε-factor approximation algorithm for computing boxicity is known, for any ε < 1. In this paper, we study the boxicity problem on Circular Arc graphs - intersection graphs of arcs of a circle. We give a (2+ 1/k)-factor polynomial time approximation algorithm for computing the boxicity of any circular arc graph along with a corresponding box representation, where k ≥ 1 is its boxicity. For Normal Circular Arc(NCA) graphs, with an NCA model given, this can be improved to an additive 2-factor approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity is O(mn+n2) in both these cases and in O(mn+kn2) which is at most O(n3) time we also get their corresponding box representations, where n is the number of vertices of the graph and m is its number of edges. The additive 2-factor algorithm directly works for any Proper Circular Arc graph, since computing an NCA model for it can be done in polynomial time.
Resumo:
A $k$-box $B=(R_1,...,R_k)$, where each $R_i$ is a closed interval on the real line, is defined to be the Cartesian product $R_1\times R_2\times ...\times R_k$. If each $R_i$ is a unit length interval, we call $B$ a $k$-cube. Boxicity of a graph $G$, denoted as $\boxi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-boxes. Similarly, the cubicity of $G$, denoted as $\cubi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-cubes. It was shown in [L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan: Representing graphs as the intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Conference, available at CoRR, abs/cs/ 0607092, 2006.] that, for a graph $G$ with maximum degree $\Delta$, $\cubi(G)\leq \lceil 4(\Delta +1)\log n\rceil$. In this paper, we show that, for a $k$-degenerate graph $G$, $\cubi(G) \leq (k+2) \lceil 2e \log n \rceil$. Since $k$ is at most $\Delta$ and can be much lower, this clearly is a stronger result. This bound is tight. We also give an efficient deterministic algorithm that runs in $O(n^2k)$ time to output a $8k(\lceil 2.42 \log n\rceil + 1)$ dimensional cube representation for $G$. An important consequence of the above result is that if the crossing number of a graph $G$ is $t$, then $\boxi(G)$ is $O(t^{1/4}{\lceil\log t\rceil}^{3/4})$ . This bound is tight up to a factor of $O((\log t)^{1/4})$. We also show that, if $G$ has $n$ vertices, then $\cubi(G)$ is $O(\log n + t^{1/4}\log t)$. Using our bound for the cubicity of $k$-degenerate graphs we show that cubicity of almost all graphs in $\mathcal{G}(n,m)$ model is $O(d_{av}\log n)$, where $d_{av}$ denotes the average degree of the graph under consideration. model is O(davlogn).