232 resultados para Composite Measurement Scales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixed boundary value problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite parallel-sided composite slab, is solved completely by using the Wiener-Hopf technique. An analytical expression is derived for the sputtering temperature at the quench front being created by a cold fluid moving on the upper surface of the slab at a constant speed v. The dependence of the various configurational parameters of the problem under consideration, on the sputtering temperature, is rather complicated and representative tables of numerical values of this important physical quantity are prepared for certain typical values of these parameters. Asymptotic results in their most simplified forms are also obtained when (i) the ratio of the thicknesses of the two materials comprising the slab is very much smaller than unity, and (ii) the quench-front speed v is very large, keeping the other parameters fixed, in both the cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of vibrations of multifiber composite shells is presented. Special attention is paid to the effect of composition of different fibers on the frequency spectrum of a freely vibrating cylindrical shell. The numerical results indicate clustering of frequency spectrum of a freely vibrating cylindrical composite shell as compared with the isotropic shell, and the spectrum varies considerably with the composition of the constituent materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstrat is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High dielectric constant (ca. 2.4 x 10(6) at 1 kHz) nanocomposite of polyaniline (PANI)/CaCu3Ti4O12 (CCTO) was synthesized using a simple procedure involving in situ polymerization of aniline in dil. HCl. The PANI and the composite were subjected to X-ray diffraction, Fourier transform infrared, thermo gravimetric, scanning electron microscopy and transmission electron microscopy analyses. The presence of the nanocrystallites of CCTO embedded in the nanofibers of PANI matrix was established by TEM. Frequency dependent characteristics of the dielectric constant. dielectric loss and AC conductivity were studied for the PANI and the composites. The dielectric constant increased as the CCTO content increased in PANI but decreased with increasing frequency (100 Hz-1 MHz) of measurement. The dielectric loss was two times less than the value obtained for pure PANI around 100 Hz. The AC conductivity increased slightly up to 2 kHz as the CCTO content increased in the PANI which was attributed to the polarization of the charge carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic composite membranes comprising Nation with inorganic materials such as silica, mesoporous zirconium phosphate (MZP) and mesoporous titanium phosphate (MTP) are fabricated and evaluated as proton-exchange-membrane electrolytes for direct methanol fuel cells (DMFCs). For Nation-silica composite membrane, silica is impregnated into Nation matrix as a sol by a novel water hydrolysis process precluding the external use of an acid. Instead, the acidic nature of Nation facilitates in situ polymerization reaction with Nation leading to a uniform composite membrane. The rapid hydrolysis and polymerization reaction while preparing zirconia and titania sols leads to uncontrolled thickness and volume reduction in the composite membranes, and hence is not conducive for casting membranes. Nafion-MZP and Nafion-MTP composite membranes are prepared by mixing pre-formed porous MZP and MTP with Nation matrix. MZP and MTP are synthesised by co-assembly of a tri-block co-polymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide/titanium isopropoxide and phosphorous trichloride as inorganic precursors. Methanol release kinetics is studied by volume-localized NMR spectroscopy (employing ``point resolved spectroscopy'', PRESS), the results clearly demonstrating that the incorporation of inorganic fillers in Nation retards the methanol release kinetics under osmotic drag. Appreciable proton conductivity with reduced methanol permeability across the composite membranes leads to improved performance of DMFCs in relation to commercially available Nafion-117 membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been argued that better timing precision allowed by satellites like Rossi X-ray Timing Explorer (RXTE) will allow us to measure the orbital eccentricity and the angle of periastron of some of the bright persistent high-mass X-ray binaries (HMXBs) and hence a possible measurement of apsidal motion in these system. Measuring the rate of apsidal motion allows one to estimate the apsidal motion constant of the mass losing companion star and hence allows for the direct testing of the stellar structure models for these giant stars present in the HMXBs. In the present paper, we use the archival RXTE data of two bright persistent sources, namely Cen X-3 and SMC X-1, to measure the very small orbital eccentricity and the angle of periastron. We find that the small variations in the pulse profiles of these sources, rather than the intrinsic time resolution provided by RXTE, limit the accuracy with which we can measure arrival time of the pulses from these sources. This influences the accuracy with which one can measure the orbital parameters, especially the very small eccentricity and the angle of periastron in these sources. The observations of SMC X-1 in the year 2000 were taken during the high-flux state of the source and we could determine the orbital eccentricity and omega using this data set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in situ bulk ultrafine bimodal eutectic Al-Cu-Si composite was synthesized by solidification. This heterostructured composite with microstructural length scale hierarchy in the eutectic microstructure, which combines an ultrafine-scale binary cellular eutectic (alpha-Al + Al2Cu) and a nanometer-sized anomalous ternary eutectic (alpha-Al + Al2Cu + Si), exhibits high fracture strength (1.1 +/- 0.1 GPa) and large compressive plastic strain (11 +/- 2%) at room temperature. The improved compressive plasticity of the bimodal-nanoeutectic composite originates from homogeneous and uniform distribution of inhomogeneous plastic deformation (localized shear bands), together with strong interaction between shear bands in the spatially heterogeneous structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow around a 120 degrees blunt cone model with a base radius of 60mm has been visualised at Mach 14.8 and 9.1 using argon as the test gas, at the newly established high speed schlieren facility in the IISc hypersonic shock tunnel HST2. The experimental shock stand off distance around the blunt cone is compared with that obtained using a commercial CFD package. The computed values of shock stand off distance of the blunt cone is found to agree reasonably well with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-standard finite difference methods (NSFDM) introduced by Mickens [Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers–Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791–797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250–2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235–276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter (λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for determining the electron/hole transport length scale of model semiconducting polymer systems by scanning a narrow-light probe beam over the nonoverlapping anode/cathode region in asymmetric sandwich device structures is presented (see figure). Electron versus hole collection efficacy, and disorder and spatial anisotropy in the electrical transport parameters can be estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave propagation and its frequency bandgaps in a parametrically modulated composite laminate are reported in this paper. The modulated properties under considerations are due to periodic microstructure, for example honeycomb core sandwich composite, which can be parameterized and homogenized in a suitable scale. Wave equations are derived by assuming a third-order shear deformation theory. Homogenization of the wave equations is carried out in the scale of wavelength. In-plane wave and flexural-shear wave dispersions are obtained for a range of values of a stiffness modulation coefficient (alpha). A clear pattern of stop-bands is observed for alpha >= 4. To validate the band-gap phenomena, we take recourse to time domain response obtained from finite element simulation. As predicted by the proposed analytical technique, a distinct correlation between the chosen frequency band and the simulated wave arrival time and amplitude reduction is found. This promises practical applications of the proposed analytical technique to designing parametrically modulated composite laminate for wave suppression. (C) 2009 Elsevier B.V. All rights reserved.