105 resultados para Collocation Formulation
Resumo:
The relationship between the parameters in a description based on a mesoscale free energy functional for the concentration field and the macroscopic properties, such as the bending and compression moduli and the permeation constant, are examined for an asymmetric lamellar phase where the mass fractions of the hydrophobic and hydrophilic parts are not equal. The difference in the mass fractions is incorporated using a cubic term in the free energy functional, in addition to the usual quadratic and quartic terms in the Landau–Ginsburg formulation. The relationship between the coefficient of the cubic term and the difference in the mass fractions of the hydrophilic and hydrophobic parts is obtained. For a lamellar phase, it is important to ensure that the surface tension is zero due to symmetry considerations. The relationship between the parameters in the free energy functional for zero surface tension is derived. When the interface between the hydrophilic and hydrophobic parts is diffuse, it is found that the bending and compression moduli, scaled by the parameters in the free energy functional, do increase as the asymmetry in the bilayer increases. When the interface between the hydrophilic and hydrophobic parts is sharp, the scaled bending and compression moduli show no dependence on the asymmetry in the bilayer. The ratio of the permeation constant in between the water and bilayer in a molecular description and the Onsager coefficient in the mesoscale description is O(1) for both sharp and diffuse interfaces and it increases as the difference in the mass fractions is increased.
Resumo:
Bearing capacity factor N-c for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (phi=0) condition. The Study follows the lower bound limit analysis in conjunction With finite elements and linear programming. A new formulation is proposed for solving an axisymmetric geotechnical stability problem. The variation of N-c with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed on the stiff clay stratum overlaid by a soft clay layer. It was noticed that the magnitude of N-c reaches almost a constant value for embedment ratio greater than unity. The roughness of the pile base and shaft affects marginally the magnitudes of N-c. The results obtained from the present study are found to compare quite well with the different numerical solutions reported in the literature.
Resumo:
It is shown that in the finite-element formulation of the general quasi-harmonic equation using tetrahedral elements, for every member of the element family there exists just one numerical universal matrix indpendent of the size, shape and material properties of the element. Thus the element matrix is conveniently constructed by manipulating this single matrix along with a set of reverse sequence codes at the same time accounting for the size, shape and material properties in a simple manner.
Resumo:
Non-linear natural vibration characteristics and the dynamic response of hingeless and fully articulated rotors of rectangular cross-section are studied by using the finite element method. In the formulation of response problems, the global variables are augmented with appropriate additional variables, facilitating direct determination of sub-harmonic response. Numerical results are given showing the effect of the geometric non-linearity on the first three natural frequencies. Response analysis of typical rotors indicates a possibility of substantial sub-harmonic response especially in the fully articulated rotors widely adopted in helicopters.
Resumo:
A perturbative scaling theory for calculating static thermodynamic properties of arbitrary local impurity degrees of freedom interacting with the conduction electrons of a metal is presented. The basic features are developments of the ideas of Anderson and Wilson, but the precise formulation is new and is capable of taking into account band-edge effects which cannot be neglected in certain problems. Recursion relations are derived for arbitrary interaction Hamiltonians up to third order in perturbation theory. A generalized impurity Hamiltonian is defined and its scaling equations are derived up to third order. The strategy of using such perturbative scaling equations is delineated and the renormalization-group aspects are discussed. The method is illustrated by applying it to the single-impurity Kondo problem whose static properties are well understood.
Resumo:
We present a new algorithm for continuation of limit cycles of autonomous systems as a system parameter is varied. The algorithm works in phase space with an ordered set of points on the limit cycle, along with spline interpolation. Currently popular algorithms in bifurcation analysis packages compute time-domain approximations of limit cycles using either shooting or collocation. The present approach seems useful for continuation near saddle homoclinic points, where it encounters a corner while time-domain methods essentially encounter a discontinuity (a relatively short period of rapid variation). Other phase space-based algorithms use rescaled arclength in place of time, but subsequently resemble the time-domain methods. Compared to these, we introduce additional freedom through a variable stretching of arclength based on local curvature, through the use of an auxiliary index-based variable. Several numerical examples are presented. Comparisons with results from the popular package, MATCONT, are favorable close to saddle homoclinic points.
Resumo:
A formulation has been developed using perturbation theory to evaluate the π-contribution to the nuclear spin coupling constants involving nuclei at least one of which is an unsaturated center. This fromulation accounts for the π-contribution in terms of the core polarization and one-center exchange at the π-center. The formulation developed together with the Dirac vector model and Penney-Dirac bond-order formalisms was employed to calculate the geminal (two-bond) proton coupling constants of carboxyl carbons in α-disubstituted acetic acids. The calculated coupling constants were found to have an orientational dependence. The results of the calculation are in good agreement with the experimental values.
Resumo:
We report a theoretical formulation for the mean cluster size distribution in a finite polycondensing system. Expressions for the mean number of n-mers with j bonds ( nj) are developed. Numerical calculations show that while the non-cyclic molecules make the dominant contribution to the small clusters, the large clusters are dominated by cyclic structures. The number of particles in ringless chains, n n,n-1, decays monotonically with n at all extents of reaction, but n n becomes bimodal near the gel point. We also find that the solvent plays an important role in the cluster size distribution.
Resumo:
A finite element analysis of thin-walled open-section laminated anisotropic beams is presented herein. A two-noded, 8 degrees of freedom per node thin-walled open-section laminated anisotropic beam finite element has been developed and used. The displacements of the element reference axes are expressed in terms of one-dimensional first order Hermite interpolation polynomials and line member assumptions are invoked in the formulation of the stiffness matrix. The problems of: 1. (a) an isotropic material Z section straight cantilever beam, and 2. (b) a single-layer (0°) composite Z section straight cantilever beam, for which continuum solutions (exact/approximate) are possible, have been solved in order to evaluate the performance of the finite element. Its applicability has been shown by solving the following problems: 3. (c) a two-layer (45°/−45°) composite Z section straight cantilever beam, 4. (d) a three-layer (0°/45°/0°) composite Z section straight cantilever beam.
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric problem of a disk oscillating harmonically in a viscous fluid whose surface is contaminated with a surfactant film. The equation of the first kind is converted to a pair of coupled integral equations of the second kind, which are solved numerically. The resistive torque on the disk is evaluated and surface velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the substrate fluid, and the depth of the disk below the surface.
Resumo:
A river basin that is extensively developed in the downstream reaches and that has a high potential for development in the upper reaches is considered for irrigation planning. A four-reservoir system is modeled on a monthly basis by using a mathematical programing (LP) formulation to find optimum cropping patterns, subject to land, water, and downstream release constraints. The model is applied to a fiver basin in India. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analyzed in the context of multiobjective planning, and the tradeoffs are discussed.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
This work deals with the formulation and implementation of finite deformation viscoplasticity within the framework of stress-based hybrid finite element methods. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements. The conventional return-mapping scheme cannot be used in the context of hybrid stress methods since the stress is known, and the strain and the internal plastic variables have to be recovered using this known stress field.We discuss the formulation and implementation of the consistent tangent tensor, and the return-mapping algorithm within the context of the hybrid method. We demonstrate the efficacy of the algorithm on a wide range of problems.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.