136 resultados para Causal loops
Resumo:
The variation of the viscosity as a function of the sequence distribution in an A-B random copolymer melt is determined. The parameters that characterize the random copolymer are the fraction of A monomers f, the parameter lambda which determines the correlation in the monomer identities along a chain and the Flory chi parameter chi(F) which determines the strength of the enthalpic repulsion between monomers of type A and B. For lambda>0, there is a greater probability of finding like monomers at adjacent positions along the chain, and for lambda<0 unlike monomers are more likely to be adjacent to each other. The traditional Markov model for the random copolymer melt is altered to remove ultraviolet divergences in the equations for the renormalized viscosity, and the phase diagram for the modified model has a binary fluid type transition for lambda>0 and does not exhibit a phase transition for lambda<0. A mode coupling analysis is used to determine the renormalization of the viscosity due to the dependence of the bare viscosity on the local concentration field. Due to the dissipative nature of the coupling. there are nonlinearities both in the transport equation and in the noise correlation. The concentration dependence of the transport coefficient presents additional difficulties in the formulation due to the Ito-Stratonovich dilemma, and there is some ambiguity about the choice of the concentration to be used while calculating the noise correlation. In the Appendix, it is shown using a diagrammatic perturbation analysis that the Ito prescription for the calculation of the transport coefficient, when coupled with a causal discretization scheme, provides a consistent formulation that satisfies stationarity and the fluctuation dissipation theorem. This functional integral formalism is used in the present analysis, and consistency is verified for the present problem as well. The upper critical dimension for this type of renormaliaation is 2, and so there is no divergence in the viscosity in the vicinity of a critical point. The results indicate that there is a systematic dependence of the viscosity on lambda and chi(F). The fluctuations tend to increase the viscosity for lambda<0, and decrease the viscosity for lambda>0, and an increase in chi(F) tends to decrease the viscosity. (C) 1996 American Institute of Physics.
Resumo:
The various types of chain folding and possible intraloop as well as interloop base pairing in human telomeric DNA containing d(TTAG(3)) repeats have been investigated by model-building, molecular mechanics, and molecular dynamics techniques. Model-building and molecular mechanics studies indicate that it is possible to build a variety of energetically favorable folded-back structures with the two TTA loops on same side and the 5' end thymines in the two loops forming TATA tetrads involving a number of different intraloop as well as interloop A:T pairing schemes. In these folded-back structures, although both intraloop and interloop Watson-Crick pairing is feasible, no structure is possible with interloop Hoogsteen pairing. MD studies of representative structures indicate that the guanine-tetraplex stem is very rigid and, while the loop regions are relatively much more flexible, most of the hydrogen bonds remain intact throughout the 350-ps in vacuo simulation. The various possible TTA loop structures, although they are energetically similar, have characteristic inter proton distances, which could give rise to unique cross-peaks in two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments. These folded-back structures with A:T pairings in the loop region help in rationalizing the data from chemical probing and other biochemical studies on human telomeric DNA.
Monte Carlo simulation of network formation based on structural fragments in epoxy-anhydride systems
Resumo:
A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
In this paper, we give a method for probabilistic assignment to the Realistic Abductive Reasoning Model, The knowledge is assumed to be represented in the form of causal chaining, namely, hyper-bipartite network. Hyper-bipartite network is the most generalized form of knowledge representation for which, so far, there has been no way of assigning probability to the explanations, First, the inference mechanism using realistic abductive reasoning model is briefly described and then probability is assigned to each of the explanations so as to pick up the explanations in the decreasing order of plausibility.
Resumo:
Nebulized spray pyrolysis provides a good low?temperature chemical route for preparing thin films of PbTiO3, (Pb0.9,La0.1)TiO3 and Pb(Zr0.52,Ti0.48)O3. The films are a? or c? axis oriented, with spherical grains of ?30 nm and give satisfactory P?E hysteresis loops. © 1995 American Institute of Physics.
Resumo:
Background: Sobemoviruses are a group of RNA plant viruses that have a narrow host range. They are characterized in vitro by their stability, high thermal inactivation point and longevity. The three-dimensional structure of only one virus belonging to this group, southern bean mosaic virus (SBMV), is known. Structural studies on sesbania mosaic virus (SMV), which is closely related to SBMV, will provide details of the molecular interactions that are likely to be important in the stability and assembly of sobemoviruses. Results: We have determined the three-dimensional structure of SMV at 3 Angstrom resolution. The polypeptide fold and quaternary organization are very similar to those of SBMV. The capsid consists of sixty icosahedral asymmetric units, each comprising three copies of a chemically identical coat protein subunit, which are designated as A, B and C and are in structurally different environments. Four cation-binding sites have been located in the icosahedral asymmetric unit. Of these, the site at the quasi-threefold axis is not found in SBMV. Structural differences are observed in loops and regions close to this cation-binding site. Preliminary studies on ethylene diamine tetra acetic acid (EDTA) treated crystals suggest asymmetry in removal of the quasi-equivalent cations at the AB, BC, and AC subunit interfaces. Conclusions: Despite the overall similarity between SMV and SBMV in the nature of the polypeptide fold, these viruses show a number of differences in intermolecular interactions. The polar interactions at the quasi-threefold axis are substantially less in SMV and positively charged residues on the RNA-facing side of the protein and in the N-terminal arm are not particularly well conserved. This suggests that protein-RNA interactions are likely to be different between the two viruses.
Resumo:
The irreversibility line for H?c in a single crystal specimen of Bi2Sr2CaCu2O8+? (Bi2212) has been determined via vanishing of hysteresis in isothermal dc magnetization measurements. The hysteresis loops (H?c) in Bi2212 appear to show signatures of two-component magnetic response in several temperature regions where the temperature dependence of irreversibility field charges sharply. It is proposed that the observed behavior may be a consequence of existence of weak links of varying strength in Bi2212
Resumo:
The understanding and control of anisotropy in Fe films grown on cubic systems such as GaAs and MgO has been of interest from the point of view of applications in devices. We report magnetic anisotropy studies on Fe/GaAs(001) and Fe/MgO/GaAs(001) prepared by pulsed laser deposition. In Fe/GaAs(001), magneto optical Kerr effect (MOKE) measurements revealed a dominant uniaxial anisotropy for Fe thickness less than 20 monolayers (ML) and this was confirmed by ferromagnetic resonance (FMR) studies. Multiple steps in the hysteresis loops were observed for Fe films of thickness 20 and 25 ML. Whereas, in Fe/MgO/GaAs(001), even at 25 ML of Fe, the uniaxial anisotropy remained dominant. The anisotropy constants obtained from FMR spectra have shown that the relative strength of uniaxial anisotropy is higher as compared to the cubic anisotropy constant in the case of Fe/MgO/GaAs(001). (C) 2011 American Institute of Physics. doi:10.1063/1.3556941]
Resumo:
The molecular structure of 1,1'-bi(acenaphthen-1-ylidene)-2,2'-dione 1, a potential building-block for the synthesis of fullerene fragments, has been investigated by X-ray crystallography and semi-empirical (AM1 and PM3) calculations. There is a good agreement between the calculated and crystal structure which is essentially planar and has E-configuration. In the solid state, molecules of 1 pack in an interesting manner as corrugated sheets sustained by a network of C-H ... O hydrogen bonds and resulting in the formation of tetrameric loops. While steric factors limit the reactivity of the carbonyl groups in 1, the ene double bond of the ene-dione moiety present in it exhibits propensity toward [4 + 2]-cycloadditions to furnish novel and highly compressed polycycles 8-10.
Resumo:
The Walker sequence, GXXXXGKT, present in all the six subunits of F-1-ATPase exists in a folded form, known as phosphate-binding loop (P-loop). Analysis of the Ramachandran angles showed only small RMS deviation between the nucleotide-bound and nucleotide-free forms. This indicated a good overlap of the backbone loops. The catalytic beta-subunits (chains D, E and F) showed significant changes in the Ramachandran angles and the side chain torsion angles, but not the structural alpha-subunits (chains A, B and C). Most striking among these are the changes associated with Val160 and Gly161 corresponding to a flip in the peptide unit between them when a nucleotide is bound (chains D or F compared to nucleotide-free chain E). The conformational analysis further revealed a hitherto unnoticed hydrogen bond between amide-N of the flipped Gly161 and terminal phosphate-O of the nucleotide. This assigns a role for this conserved amino acid, otherwise ignored, of making an unusual direct interaction between the peptide backbone of the enzyme protein and the incoming nucleotide substrate. Significance of this interaction is enhanced, as it is limited only to the catalytic subunits, and also likely to involve a mechanical rotation of bonds of the peptide unit. Hopefully this is part of the overall events that link the chemical hydrolysis of ATP with the mechanical rotation of this molecule, now famous as tiny molecular motor.
Resumo:
Glass nanocomposites in the system (1-x)Li2B4O7-xBi(2)WO(6) (0 less than or equal to x less than or equal to 0.35, in molar ratio) were fabricated by splat quenching technique. The as-quenched samples were X-ray amorphous. Differential Thermal Analyses (DTA) confirmed their glassy nature. The composites on heat-treatment at 720 K yielded monophasic crystalline bismuth tungstate in lithium borate glass matrix. The average size and the spherical nature of the dispersed crystallites were assessed via High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constants (epsilon(r)) of both the as-quenched and post heat-treated composites were found to increase with increase in x (bismuth tungstate content) at all the frequencies (100 Hz-40 MHz) in the temperature range 300 K-870 K. While the dielectric loss (D) decreased with increasing x. The pyroelectric coefficients of the as-quenched (consisting 20 nm sized crystallites) and 720 K heat-treated sample (x = 0.3) were determined as a function of temperature (300 K-873 K) and the values obtained at room temperature were 20 and 60 muC/m(2) K respectively. The as-quenched and heat-treated (720 K) glass nanocomposites exhibited ferroelectric (P Vs E) hysteresis loops. The remnant polarization and coercive field of the heat-treated glass nanocomposite at 300 K were respectively 2.597 muC/cm(2) and 543 V/cm. These glass nanocomposites were birefringent in the 300-873 K temperature range.
Resumo:
In this paper, a method of tracking the peak power in a wind energy conversion system (WECS) is proposed, which is independent of the turbine parameters and air density. The algorithm searches for the peak power by varying the speed in the desired direction. The generator is operated in the speed control mode with the speed reference being dynamically modified in accordance with the magnitude and direction of change of active power. The peak power points in the P-omega curve correspond to dP/domega = 0. This fact is made use of in the optimum point search algorithm. The generator considered is a wound rotor induction machine whose stator is connected directly to the grid and the rotor is fed through back-to-back pulse-width-modulation (PWM) converters. Stator flux-oriented vector control is applied to control the active and reactive current loops independently. The turbine characteristics are generated by a dc motor fed from a commercial dc drive. All of the control loops are executed by a single-chip digital signal processor (DSP) controller TMS320F240. Experimental results show that the performance of the control algorithm compares well with the conventional torque control method.
Resumo:
Symmetric and asymmetric superlattices (SLs) composed of ferromagnetic La0.6Sr0.4MnO3 (LSMO) and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3 – 0.3PbTiO3 (PMN-PT) with different periodicities have been fabricated on LaNiO3 (LNO) coated LaAlO3 (100) (LAO) substrates by pulsed laser ablation deposition. Structural, ferromagnetic and ferroelectric properties have been studied for all the SLs. All the heterostructures exhibited good ferromagnetic response over a wide range of temperatures (10K – 300K), whereas only the asymmetric SLs exhibited reasonably good ferroelectric behaviour. Ferromagnetic and ferroelectric hysteresis loops observed in the asymmetric SLs confirmed their biferroic nature. Studies were conducted towards understanding the influence of LSMO layers on the electrical responses of the heterostructures. Absence of ferroelectricity in the symmetric SL structures has been attributed to their high leakage characteristics. Strong influence of an applied magnetic field of 1.2T was observed on the ferroelectric properties of the asymmetric SLs. The effect of magnetic field on the ferroelectric properties of the SLs indicated possibility of strong interfacial effect.
Resumo:
In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160–455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the [beta]-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between [beta] strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing.
Resumo:
Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an opportunity to monitor the changes, which is important for natural resource management and sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-polarization remote sensing data with efficient classification algorithms and pattern recognition techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, edge, transitional, patch and undetermined. Based on this, urban growth model was developed to determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising urban growth poles and consequence of earlier policy decisions that can help in evolving strategies for effective land use policies.