121 resultados para Capture Enzyme-immunoassay
Resumo:
Angiotensin converting enzyme (ACE) regulates the blood pressure by converting angiotensin I to angiotensin II and bradykinin to bradykinin 1-7. These two reactions elevate the blood pressure as angiotensin II and bradykinin are vasoconstrictory and vasodilatory hormones, respectively. Therefore, inhibition of ACE is an important strategy for the treatment of hypertension. The natural substrates of ACE, i.e., angiotensin II and bradykinin, contain a Pro-Phe motif near the site of hydrolysis. Therefore, there may be a Pro-Phe binding pocket at the active site of ACE, which may facilitate the substrate binding. In view of this, we have synthesized a series of thiol-and selenol-containing dipeptides and captopril analogues and studied their ACE inhibition activities. This study reveals that both the selenol or thiol moiety and proline residues are essential for ACE inhibition. Although the introduction of a Phe residue to captopril and its selenium analogue considerably reduces the inhibitory effect, there appears to be a Phe binding pocket at the active site of ACE.
Resumo:
A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.
Resumo:
Flavokinase was purified, for the first time from a plant source [mung bean (Phaseolus aureus)] by affinity chromatography in the presence of orthophosphate and by using C-8 ATP-agarose (ATP linked through the C-8 position to beaded agarose), Cibacron Blue and riboflavin--Sepharoses. An altered substrates-saturation pattern was observed in the presence of K2HPO4. The conformational changes of the enzyme in the presence of K2HPO4 were monitored by fluorescence spectroscopy. These results highlight the regulatory nature of this enzyme.
Resumo:
Previous studies of complexes of Mycobacterium tuberculosis PanK (MtPanK) with nucleotide diphosphates and non-hydrolysable analogues of nucleoside triphosphates in the presence or the absence of pantothenate established that the enzyme has dual specificity for ATP and GTP, revealed the unusual movement of ligands during enzyme action and provided information on the effect of pantothenate on the location and conformation of the nucleotides at the beginning and the end of enzyme action. The X-ray analyses of the binary complexes of MtPanK with pantothenate, pantothenol and N-nonylpantothenamide reported here demonstrate that in the absence of nucleotide these ligands occupy, with a somewhat open conformation, a location similar to that occupied by phosphopantothenate in the `end' complexes, which differs distinctly from the location of pantothenate in the closed conformation in the ternary `initiation' complexes. The conformation and the location of the nucleotide were also different in the initiation and end complexes. An invariant arginine appears to play a critical role in the movement of ligands that takes place during enzyme action. The work presented here completes the description of the locations and conformations of nucleoside diphosphates and triphosphates and pantothenate in different binary and ternary complexes, and suggests a structural rationale for the movement of ligands during enzyme action. The present investigation also suggests that N-alkylpantothenamides could be phosphorylated by the enzyme in the same manner as pantothenate.
Resumo:
Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin-angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356-1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 angstrom resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein-selenolate interaction. These new structures of tACE-SeCap and AnCE-SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity.
Resumo:
This paper presents a low cost but high resolution retinal image acquisition system of the human eye. The images acquired by a CMOS image sensor are communicated through the Universal Serial Bus (USB) interface to a personal computer for viewing and further processing. The image acquisition time was estimated to be 2.5 seconds. This system can also be used in telemedicine applications.
Resumo:
Angiotensin converting enzyme (ACE) catalyses the conversion of angiotensin I (Ang I) to angiotensin II (Ang II). The ACE activity directly related to hypertension as Ang II is the blood pressure regulating hormone. Therefore, ACE inhibitors are a major class of antihypertensive drugs. Captopril, chemical name, was the first orally active ACE inhibitory antihypertensive drug, discovered in 1977. Since then, a number of such drugs have been synthesized. Enzyme-inhibitor bound crystal structural studies reveal a great deal of understanding about the interactions of the inhibitors at the active site of ACE. This can be helpful in the rational design of ACE inhibitors. With the advancement of the combination therapy, it is known that ACE inhibitors having antioxidant activity can be beneficial for the treatment of hypertension. This study describes the development of ACE inhibitors in the treatment of hypertension. Importance of ACE inhibitors having antioxidant activity is also described.
Resumo:
A deep‐level transient spectroscopy (DLTS) technique is reported for determining the capture cross‐section activation energy directly. Conventionally, the capture activation energy is obtained from the temperature dependence of the capture cross section. Capture cross‐section measurement is often very doubtful due to many intrinsic errors and is more critical for nonexponential capture kinetics. The essence of this technique is to use an emission pulse to allow the defects to emit electrons and the transient signal from capture process due to a large capture barrier was analyzed, in contrast with the emission signal in conventional DLTS. This technique has been applied for determining the capture barrier for silicon‐related DX centers in AlxGa1−xAs for different AlAs mole fractions.
Resumo:
In plants, fatty oils are generally stored in spherical intracellular organelles referred to as oleosomes that are covered by proteins such as oleosin. Seeds with high oil content have more oleosin than those with low oil content. However, the exact role of oleosin in oil accumulation is thus far unclear. Here, we report the isolation of a catalytically active 14 S multiprotein complex capable of acylating monoacylglycerol from the microsomal membranes of developing peanut cotyledons. Microsomal membranes from immature peanut seeds were solubilized using 8 M urea and 10 mM CHAPS. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 27 proteins in the 14 S complex. The major proteins present in the 14 S complex are conarachin, the major allergen Ara h 1, and other seed storage proteins. We identified oleosin 3 as a part of the 14 S complex, which is capable of acylating monoacylglycerol. The recombinant OLE3 microsomes from Saccharomyces cerevisiae have been shown to have both a monoacylglycerol acyltransferase and a phospholipase A(2) activity. Overexpression of the oleosin 3 (OLE3) gene in S. cerevisiae resulted in an increased accumulation of diacylglycerols and triacylglycerols and decreased phospholipids. These findings provide a direct role for a structural protein (OLE3) in the biosynthesis and mobilization of plant oils.
Resumo:
Angiotensin converting enzyme (ACE) inhibitors are important for the treatment of hypertension as they can decrease the formation of vasopressor hormone angiotensin II (Ang II) and elevate the levels of vasodilating hormone bradykinin. It is observed that bradykinin contains a Ser-Pro-Phe motif near the site of hydrolysis. The selenium analogues of captopril represent a novel class of ACE inhibitors as they also exhibit significant antioxidant activity. In this study, several di- and tripeptides containing selenocysteine and cysteine residues at the N-terminal were synthesized. Hydrolysis of angiotensin I (Ang I) to Ang II by ACE was studied in the presence of these peptides. It is observed that the introduction of L-Phe to Sec-Pro and Cys-Pro peptides significantly increases the ACE inhibitory activity. On the other hand, the introduction of L-Val or L-Ala decreases the inhibitory potency of the parent compounds. The presence of an L-Pro moiety in captopril analogues appears to be important for ACE inhibition as the replacement of L-Pro by L-piperidine 2-carboxylic acid decreases the ACE inhibition. The synthetic peptides were also tested for their ability to scavenge peroxynitrite (PN) and to exhibit glutathione peroxidase (GPx)-like activity. All the selenium-containing peptides exhibited good PN-scavenging and GPx activities.