155 resultados para Bus terminals
Resumo:
A new design technique for an SVC-based power system damping controller has been proposed. The controller attempts to place all plant poles within a specified region on the s-plane to guarantee the desired closed loop performance. The use of Horowitz's quantitative feedback theory (QFT) permits the design of a 'fixed gain controller' that maintains its performance in spite of large variations in the plant parameters during its normal course of operation. The required controller parameters are arrived at by solving an optimization problem that incorporates the control specifications. The performance of this robust controller has been evaluated on a single machine infinite bus system equipped with a mid point SVC, and the results are shown to be consistent with the expected performance of the stabilizer. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
This paper presents a new approach to the power flow analysis in steady state for multiterminal DC-AC systems. A flexible and practical choice of per unit system is used to formulate the DC network and converter equations. A converter is represented by Norton's equivalent of a current source in parallel with the commutation resistance. Unlike in previous literature, the DC network equations are used to derive the controller equations for the DC system using a subset of specifications. The specifications considered are current or power at all terminals except the slack terminal where the DC voltage is specified. The control equations are solved by Newton's method, using the current injections at the converter terminals as state variables. Further, a systematic approach to the handling of constraints is proposed by identifying the priorities in rescheduling of the specified variables. The methodology is illustrated by example of a 5 terminal DC system.
Resumo:
This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes.
Resumo:
Simulation is an important means of evaluating new microarchitectures. With the invention of multi-core (CMP) platforms, simulators are becoming larger and more complex. However, with the availability of CMPs with larger caches and higher operating frequency, the wall clock time required for simulating an application has become comparatively shorter. Reducing this simulation time further is a great challenge, especially in the case of multi-threaded workload due to indeterminacy introduced due to simultaneously executing various threads. In this paper, we propose a technique for speeding multi-core simulation. The model of the processor core and cache are replaced with functional models, to achieve speedup. A timed Petri net model is used to estimate the execution time of the processor and the memory access latencies are estimated using hit/miss information obtained from the functional model of the cache. This model can be used to predict performance of data parallel applications or multiprogramming workload on CMP platform with various cache hierarchies and shared bus interconnect. The error in estimation of the execution time of an application is within 6%. The speedup achieved ranges between an average of 2x--4x over the cycle accurate simulator.
Resumo:
Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.
Resumo:
With deregulation, the total transfer capability (TTC) calculation, which is the basis for evaluating available transfer capability (ATC), has become very significant. TTC is an important index in power markets with large volume of inter-area power exchanges and wheeling transactions taking place on an hourly basis. Its computation helps to achieve a viable technical and commercial transmission operation. The aim of the paper is to evaluate TTC in the interconnections and also to improve it using reactive optimization technique and UPFC devices. Computations are carried out for normal and contingency cases such as single line, tie line and generator outages. Base and optimized results are presented, and the results show how reactive optimization and unified power flow controller help to improve the system conditions. In this paper repeated power flow method is used to calculate TTC due to its ease of implementation. A case study is carried out on a 205 bus equivalent system, a part of Indian Southern grid. Parameters like voltage magnitude, L-index, minimum singular value and MW losses are computed to analyze the system performance.
Resumo:
This paper presents a prototype of a fuzzy system for alleviation of network overloads in the day-to-day operation of power systems. The control used for overload alleviation is real power generation rescheduling. Generation Shift Sensitivity Factors (GSSF) are computed accurately, using a more realistic operational load flow model. Overloading of lines and sensitivity of controlling variables are translated into fuzzy set notations to formulate the relation between overloading of line and controlling ability of generation scheduling. A fuzzy rule based system is formed to select the controllers, their movement direction and step size. Overall sensitivity of line loading to each of the generation is also considered in selecting the controller. Results obtained for network overload alleviation of two modified Indian power networks of 24 bus and 82 bus with line outage contingencies are presented for illustration purposes.
Resumo:
Conventional thyristor-based load commutated inverter (LCI)-fed wound field synchronous machine operates only above a minimum speed that is necessary to develop enough back emf to ensure commutation. The drive is started and brought up to a speed of around 10-15% by a complex `dc link current pulsing' technique. During this process, the drive have problems such as pulsating torque, insufficient average starting torque, longer starting time, etc. In this regard a simple starting and low-speed operation scheme, by employing an auxiliary low-power voltage source inverter (VSI) between the LCI and the machine terminals, is presented in this study. The drive is started and brought up to a low speed of around 15% using the VSI alone with field oriented control. The complete control is then smoothly and dynamically transferred to the conventional LCI control. After the control transfer, the VSI is turned off and physically disconnected from the main circuit. The advantages of this scheme are smooth starting, complete control of torque and flux at starting and low speeds, less starting time, stable operation, etc. The voltage rating of the required VSI is very low of the order of 10-15%, whereas the current rating is dependent on the starting torque requirement of the load. The experimental results from a 15.8 hp LCI-fed wound field synchronous machine are given to demonstrate the scheme.
Resumo:
In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.
Resumo:
A new topology of asymmetric cascaded H-Bridge inverter is presented in this paper It consists of two cascaded H-bridge cells per phase. They are fed from isolated dc sources having a dc bus ratio of 1:0.366. Out of many space vectors possible from this circuit, only those are chosen that lie on 12-sided polygons. Thus, the overall space vector diagram produced by this circuit consists of multiple numbers of 12-sided polygons. With a proper PWM timing calculations based on these selected space vectors, it is possible to eliminate all the 6n +/- 1, (n = odd) harmonics from the phase voltage under all operating conditions. The switching frequency of individual H-Bridge cells is also substantially low. Extensive experimental results have been presented in this paper to validate the proposed concept.
Resumo:
Insulator becomes wet partially or completely, and the pollution layer on it becomes conductive, when collecting pollutants for an extended period during dew, light rain, mist, fog or snow melting. Heavy rain is a complicated factor that it may wash away the pollution layer without initiating other stages of breakdown or it may bridge the gaps between sheds to promote flashover. The insulator with a conducting pollution layer being energized, can cause a surface leakage current to flow (also temperature-rise). As the surface conductivity is non-uniform, the conducting pollution layer becomes broken by dry bands (at spots of high current density), interrupting the flow of leakage current. Voltage across insulator gets concentrated across dry bands, and causes high electric stress and breakdown (dry band arcing). If the resistance of the insulator surface is sufficiently low, the dry band arcs can be propagated to bridge the terminals causing flashover. The present paper concerns the evaluation of the temperature distribution along the surface of an energized artificially polluted insulator string.
Resumo:
This paper makes an attempt to assess the benefits of replacing a conventional generator excitation system (AVR + PSS) with a nonlinear voltage regulator using the concepts of synchronizing and damping torque components in a single machine infinite bus (SMIB) system. In recent years, there has been considerable interest in designing nonlinear excitation controllers, which are expected to give better dynamic performance over a wider range of system and operating conditions. The performance of these controllers is often justified by simulation studies on few test cases which may not adequately represent the diverse operating conditions of a typical power system. The performance of two such nonlinear controllers which are designed based on feedback linearization and include automatic voltage regulation with good dynamic performance have been analyzed using an SMIB model. Linearizing the nonlinear control laws along with the SMIB system equations, a Heffron Phillip's type of a model has been derived. Concepts of synchronizing and damping torque components have been used to show that such controllers can impair the small signal stability under certain operating conditions. This paper shows the possibility of negative damping contribution due to nonlinear voltage regulators and gives a new insight on understanding the physical impact of complex nonlinear control laws on power system dynamics.
Resumo:
This paper proposes a nonlinear voltage regulator with one tunable parameter for multimachine power systems. Based on output feedback linearization, this regulator can achieve simultaneous voltage regulation and small-signal performance objectives. Conventionally output feedback linearization has been used for voltage regulator design by taking infinite bus voltage as reference. Unfortunately, this controller has poor small-signal performance and cannot be applied to multimachine systems without the estimation of the equivalent external reactance seen from the generator. This paper proposes a voltage regulator design by redefining the rotor angle at each generator with respect to the secondary voltage of the step-up transformer as reference instead of a common synchronously rotating reference frame. Using synchronizing and damping torques analysis, we show that the proposed voltage regulator achieves simultaneous voltage regulation and damping performance over a range of system and operating conditions by controlling the relative angle between the generator internal voltage angle delta and the secondary voltage of the step up transformer. The performance of the proposed voltage regulator is evaluated on a single machine infinite bus system and two widely used multimachine test systems.
Resumo:
In this paper, an approach to enhance the Extra High Voltage (EHV) Transmission system distance protection is presented. The scheme depends on the apparent impedance seen by the distance relay during the disturbance. In a distance relay,the impedance seen at the relay location is calculated from the fundamental frequency component of the voltage and current signals. Support Vector Machines (SVMs) are a new learning-byexample are employed in discriminating zone settings (Zone-1,Zone-2 and Zone-3) using the signals to be used by the relay.Studies on 265-bus system, an equivalent of practical Indian Western grid are presented for illustrating the proposed scheme.
Resumo:
The IEEE 802.16/WiMAX standard has fully embraced multi-antenna technology and can, thus, deliver robust and high transmission rates and higher system capacity. Nevertheless,due to its inherent form-factor constraints and cost concerns, a WiMAX mobile station (MS) should preferably contain fewer radio frequency (RF) chains than antenna elements.This is because RF chains are often substantially more expensive than antenna elements. Thus, antenna selection, wherein a subset of antennas is dynamically selected to connect to the limited RF chains for transceiving, is a highly appealing performance enhancement technique for multi-antenna WiMAX terminals.In this paper, a novel antenna selection protocol tailored for next-generation IEEE 802.16 mobile stations is proposed. As demonstrated by the extensive OPNET simulations, the proposed protocol delivers a significant performance improvement over conventional 802.16 terminals that lack the antenna selection capability. Moreover, the new protocol leverages the existing signaling methods defined in 802.16, thereby incurring a negligible signaling overhead and requiring only diminutive modifications of the standard. To the best of our knowledge, this paper represents the first effort to support antenna selection capability in IEEE 802.16 mobile stations.