132 resultados para Body fluids.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peristaltic motion of two immiscible viscous incompressible fluids in a circular tube is studied in pumping and copumping ranges under long-wavelength and low-Reynolds-number assumptions. The effect of the peripheral-layer viscosity on the time-averaged flux and the mechanical efficiency is studied. The formation and growth of the trapping zone in the core and the peripheral layer are explained. It is observed that the bolus volume in the peripheral layer increases with an increase in the viscosity ratio. The limits of the time-averaged flux (Q) over bar for trapping in the core are obtained. The trapping observed in the peripheral layer decreases in size with an increase in (Q) over bar but never disappears. The development of the complete trapping of the core fluid by the peripheral-layer fluid with an increase in the time-averaged flux is demonstrated. The effect of peripheral-layer viscosity on the reflux layer is investigated. It is also observed that the reflux occurs in the entire pumping range for all viscosity ratios and it is absent in the entire range of copumping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of mixed convection from horizontal surfaces in a porous medium saturated with a power-law-type non-Newtonian fluid is investigated. The transformed conservation laws are solved numerically for the case of variable wall hear pur conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5-1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along horizontal surfaces with variable heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a many-body Hamiltonian with two- and three-body interactions in two dimensions introduced recently by Murthy, Bhaduri and Sen. Apart from an analysis of some exact solutions in the many-body system, we analyse in detail the two-body problem which is completely solvable. We show that the solution of the two-body problem reduces to solving a known differential equation due to Heun. We show that the two-body spectrum becomes remarkably simple for large interaction strengths and the level structure resembles that of the Landau levels. We also clarify the 'ultraviolet' regularization which is needed to define an inverse-square potential properly and discuss its implications for our model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rotor-body system with blades interconnected through viscoelastic elements is analyzed for response, loads, and stability in propulsive trim in ground contact and under forward-flight conditions, A conceptual model of a multibladed rotor with rigid flap and lag motions, and the fuselage with rigid pitch and roll motions is considered, Although the interconnecting elements are placed in the in-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness, Interblade coupling can yield significant changes in the response, loads, and stability that are dependent on the interblade element and rotor-body parameters, Ground resonance stability investigations show that by tuning the interblade element stiffness, the ground resonance instability problem can be reduced or eliminated, The interblade elements with damping and stiffness provide an effective method to overcome the problems of ground and air resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of free convection in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall temperature or heat flux distribution. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a novel differential geometric characterization of two- and three-degree-of-freedom rigid body kinematics, using a metric defined on dual vectors. The instantaneous angular and linear velocities of a rigid body are expressed as a dual velocity vector, and dual inner product is defined on this dual vector, resulting in a positive semi-definite and symmetric dual matrix. We show that the maximum and minimum magnitude of the dual velocity vector, for a unit speed motion, can be obtained as eigenvalues of this dual matrix. Furthermore, we show that the tip of the dual velocity vector lies on a dual ellipse for a two-degree-of-freedom motion and on a dual ellipsoid for a three-degree-of-freedom motion. In this manner, the velocity distribution of a rigid body can be studied algebraically in terms of the eigenvalues of a dual matrix or geometrically with the dual ellipse and ellipsoid. The second-order properties of the two- and three-degree-of-freedom motions of a rigid body are also obtained from the derivatives of the elements of the dual matrix. This results in a definition of the geodesic motion of a rigid body. The theoretical results are illustrated with the help of a spatial 2R and a parallel three-degree-of-freedom manipulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method is developed for solving an inverse problem for Helmholtz's equation associated with two semi-infinite incompressible fluids of different variable refractive indices, separated by a plane interface. The unknowns of the inverse problem are: (i) the refractive indices of the two fluids, (ii) the ratio of the densities of the two fluids, and (iii) the strength of an acoustic source assumed to be situated at the interface of the two fluids. These are determined from the pressure on the interface produced by the acoustic source. The effect of the surface tension force at the interface is taken into account in this paper. The application of the proposed analytical method to solve the inverse problem is also illustrated with several examples. In particular, exact solutions of two direct problems are first derived using standard classical methods which are then used in our proposed inverse method to recover the unknowns of the corresponding inverse problems. The results are found to be in excellent agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current analytical work on the effect of convection on the late stages of spinodal decomposition in liquids is briefly described. The morphology formed during the spinodal decomposition process depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport has a significant effect on the scaling laws in the late-stage coarsening of droplets in translational or shear flows. In addition, convective transport could result in an attractive interaction between non-Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near-symmetric quench was analysed using an area distribution function, which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to time t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of fluids has wide applications in science, engineering and entertainment. Various methodologies Of visualizing fluids have evolved which emphasize on capturing different aspects of the fluids accurately. In this survey the existing methods for realistic visualization of fluids are reviewed. The approaches are classified based on the key concept they rely on for fluid modeling. This classification allows for easy selection of the method to be adopted for visualization given an application. It also enables identification of alternative techniques for fluid modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalized the Enskog theory originally developed for the hard-sphere fluid to fluids with continuous potentials, such as the Lennard–Jones. We derived the expression for the k and ω dependent transport coefficient matrix which enables us to calculate the transport coefficients for arbitrary length and time scales. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and to the conventional k dependent Enskog theory in the hard-sphere limit. As examples, the self-diffusion of a single atom, the vibrational energy relaxation, and the activated barrier crossing dynamics problem are discussed.