85 resultados para Bodies of specific vehicles.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermolecular cooperativity and structural relaxations in PVDF/PMMA blends were studied in this work with respect to different surface modified (amine, similar to NH2; carboxyl acid, similar to COOH and pristine) multiwalled nanotubes (MWNTs) at 1 wt % near blend's T-g and in the vicinity of demixing using dielectric spectroscopy, SAXS, DSC, and WAXD. Intermolecular cooperativity at T-g and configurational entropy was addressed in the framework of cooperative rearranging region (CRR) at T-g. Because of specific interactions between PVDF and NH2-MWNTs, the local composition fluctuates at its average value resulting in a broad T-g. The scale of cooperativity (xi(CRR)) and the number of segments in the cooperative volume (N-CRR) is comparatively smaller in the blends with NH2-MWNTs. This clearly suggests that the number of segments cooperatively relaxing is reduced in the blends due to specific interactions leading to more heterogeneity. The configurational entropy at T-g, as derived from Vogel-Fulcher and Adam-Gibbs analysis, was reduced in the blends in presence of MWNTs manifesting in entropic penalty of the chains. The crystallite size and the amorphous miscibility was evaluated using SAXS and was observed to be strongly contingent on the surface functional groups on MWNTs. Three distinct relaxations-alpha(c) due to relaxations in the crystalline phase of PVDF, alpha(m) indicating the amorphous miscibility in PVDF/PMMA blends, and alpha beta concerning the segmental dynamics of PMMA-were observed in the blends in the temperature range T-g < T < T-c. The dynamics as well as the nature of relaxations were observed to be dependent the surface functionality on the MWNTs. The dielectric permittivity was also enhanced in presence of MWNTs, especially with NH2-MWNTs, with minimal losses. The influence of the MWNTs on the spherulite size and crystalline morphology of the blends was also confirmed by POM and SEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-pedogenic carbonates, such as carbonate cement and nodules in the sandstones, are quite common in the terrestrial geological record. Unlike pedogenic carbonates, their stable isotope ratios lack investigations for paleo-climatic reconstructions. The present investigation therefore, explores the possibility of use of stable isotope studies of non-pedogenic carbonates from the Mb-Pleistocene Siwalik Group of sediments exposed in the Ramnagar sub-basin of the NW Himalaya. Petrographic studies reveal the dominance of micrite fabric in carbonate nodules both of pedogenic and non-pedogenic samples irrespective of specific stratigraphic unit However, calcite as cement in the sandstones shows the dominance of micrite fabric in the younger in age sediments. Seventy-two non-pedogenic carbonate samples from the carbonate nodules and cement in the Siwalik sandstones, ranging in age between similar to 1 Ma and 12.2 Ma, were analyzed for delta C-13 and delta O-18 values. The delta C-13 values vary from -24.77 parts per thousand to -1.1 parts per thousand and delta O-18 values vary from -15.34 parts per thousand to -7.81 parts per thousand. Pedogenic and non-pedogenic carbonates ranging in age between similar to 1 Ma and 6 Ma have largely similar delta C-13 values and the range of delta C-13 values indicate the dominance of C-4 type of vegetation. However, unlike pedogenic carbonates which showed the dominance of C-3 type of vegetation pre- 7 Ma on the basis of delta C-13 -depleted isotopic values (Singh et al., 2011), delta C-13 values are largely enriched in the corresponding aged non-pedogenic carbonates revealing no information on specific type of vegetation. Likewise, paleoprecipitational reconstructions from delta O-18 values in pedogenic carbonates showed a progressive increase in aridity from similar to 12 Ma to recent excluding short term increases in rainfall/monsoon intensity at around 10 Ma, 5 Ma, and 1.8 Ma (Singh et al., 2012). On the contrary, such reconstructions are not possible from the delta O-18 values of non-pedogenic carbonates and indeed the delta O-18 values of non-pedogenic carbonates are largely depleted to as much as 6 parts per thousand from the corresponding pedogenic carbonates. Such differences in delta C-13 and delta O-18 values of non-pedogenic carbonates from pedogenic carbonates are primarily due to the dependence of the former on groundwater conditions responsible for precipitating carbonate. Further, a comparison of isotopic values between non-pedogenic and pedogenic carbonates can be interpreted that post-6 Ma and pre-6 Ma non-pedogenic carbonates were largely formed by shallow and deep groundwater conditions respectively. The result of these investigative studies therefore, suggests that the stable delta C-13 and delta O-18 values of non-pedogenic carbonates, unlike the pedogenic carbonates and irrespective of nature of calcite fabric, showed their little importance in paleoclimatic and paleoecological reconstructions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we aim at reducing the error rate of the online Tamil symbol recognition system by employing multiple experts to reevaluate certain decisions of the primary support vector machine classifier. Motivated by the relatively high percentage of occurrence of base consonants in the script, a reevaluation technique has been proposed to correct any ambiguities arising in the base consonants. Secondly, a dynamic time-warping method is proposed to automatically extract the discriminative regions for each set of confused characters. Class-specific features derived from these regions aid in reducing the degree of confusion. Thirdly, statistics of specific features are proposed for resolving any confusions in vowel modifiers. The reevaluation approaches are tested on two databases (a) the isolated Tamil symbols in the IWFHR test set, and (b) the symbols segmented from a set of 10,000 Tamil words. The recognition rate of the isolated test symbols of the IWFHR database improves by 1.9 %. For the word database, the incorporation of the reevaluation step improves the symbol recognition rate by 3.5 % (from 88.4 to 91.9 %). This, in turn, boosts the word recognition rate by 11.9 % (from 65.0 to 76.9 %). The reduction in the word error rate has been achieved using a generic approach, without the incorporation of language models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies of Staphylococcus aureus have shown a relation between certain clones and the presence of specific virulence genes, but how this translates into virulence-associated functional responses is not fully elucidated. Here we addressed this issue by analyses of community-acquired S. aureus strains characterized with respect to antibiotic resistance, ST types, agr types, and virulence gene profiles. Supernatants containing exotoxins were prepared from overnight bacterial cultures, and tested in proliferation assays using human peripheral blood mononuclear cells (PBMC). The strains displayed stable phenotypic response profiles, defined by either a proliferative or cytotoxic response. Although, virtually all strains elicited superantigen-mediated proliferative responses, the strains with a cytotoxic profile induced proliferation only in cultures with the most diluted supernatants. This indicated that the superantigen-response was masked by a cytotoxic effect which was also confirmed by flow cytometry analysis. The cytotoxic supernatants contained significantly higher levels of alpha-toxin than did the proliferative supernatants. Addition of alpha-toxin to supernatants characterized as proliferative switched the response into cytotoxic profiles. In contrast, no effect of Panton Valentine Leukocidin, delta-toxin or phenol soluble modulin alpha-3 was noted in the proliferative assay. Furthermore, a significant association between agr type and phenotypic profile was found, where agrII and agrIII strains had predominantly a proliferative profile whereas agrI and IV strains had a predominantly cytotoxic profile. The differential response profiles associated with specific S. aureus strains with varying toxin production could possibly have an impact on disease manifestations, and as such may reflect specific pathotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of microporous adsorbents for separation and sequestration of carbon dioxide from flue gas streams is an area of active research. In this study, we assess the influence of specific functional groups on the adsorption selectivity of CO2/N-2 mixtures through Grand Canonical Monte Carlo (GCMC) simulations. Our model system consists of a bilayer graphene nanoribbon that has been edge functionalized with OH, NH2, NO2, CH3 and COOH. Ab initio Moller-Plesset (MP2) calculations with functionalized benzenes are used to obtain binding energies and optimized geometries for CO2 and N-2. This information is used to validate the choice classical forcefields in GCMC simulations. In addition to simulations of adsorption from binary mixtures of CO2 and N-2, the ideal adsorbed solution theory (IAST) is used to predict mixture isotherms. Our study reveals that functionalization always leads to an increase in the adsorption of both CO2 and N-2 with the highest for COOH. However, significant enhancement in the selectivity for CO2 is only seen with COOH functionalized nanoribbons. The COOH functionalization gives a 28% increase in selectivity compared to H terminated nanoribbons, whereas the improvement in the selectivity for other functional groups are much Enure modest. Our study suggests that specific functionalization with COOH groups can provide a material's design strategy to improve CO2 selectivity in microporous adsorbents. Synthesis of graphene nanoplatelets with edge functionalized COOH, which has the potential for large scale production, has recently been reported (Jeon el, al., 2012). (C) 2014 Elsevier Ltd. All rights reserved,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high temperature strength of alloys with (gamma +gamma') microstructure is primarily due to the resistance of the ordered precipitate to cutting by matrix dislocations. Such shearing requires higher stresses since it involves the creation of a planar fault. Planar fault energy is known to be dependent on composition. This implies that the composition on the fault may be different from that in the bulk for energetic reasons. Such segregation (or desegregation) of specific alloying elements to the fault may result in Suzuki strengthening which has not been explored extensively in these systems. In this work, segregation (or desegregation) of alloying elements to planar faults was studied computationally in Ni-3(Al, Ti) and Co-3(W, Al) type gamma' precipitates. The composition dependence of APB energy and heat of mixing were evaluated from first principle electronic structure calculations. A phase field model incorporating the first principles results, was used to simulate the motion of an extended superdislocation under stress concurrently with composition evolution. Results reveal that in both systems, significant (de) segregation occurs on equilibration. On application of stress, solutes were dragged along with the APB in some cases. Additionally, it was also noted the velocity of the superdislocation under an applied stress is strongly dependent on atomic mobility (i. e. diffusivity).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterophase structures in lead-free perovskite-type ferroelectric solid solutions of (1 - z)(Na0.5Bi0.5)TiO3 - zBaTiO(3) are analysed for a few critical compositions near the morphotropic phase boundary (z = 0.05-0.07). Examples of the phase coexistence and elastic matching of the phases from different symmetry groups are considered to find optimum volume fractions of specific domain types and coexisting phases at the complete stress relief in two-phase samples. Some interrelations between these volume fractions are described using variants of the domain arrangement at changes in the composition and unit-cell parameters. The evaluated room-temperature volume fractions of the ferroelectric monoclinic (Cm symmetry) and tetragonal (P4mm symmetry) phases near the morphotropic phase boundary are in agreement with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of multiferroic materials with the compositional formula, Tb1 - xDyxMnO3 (where x=0, 0.1, 0.2, 0.3 and 0.4) were prepared by the sol gel method. After characterizing the samples structurally, a systematic investigation of specific heat, magnetization and dielectric properties over the temperature range, 4-300 K, was undertaken. Based on these studies, it was found that all the samples exhibit a transition at 40 K and the observed behavior may be attributed to the ordering of Mn3+ ions. Further, all the five samples are found to exhibit a ferroelectric transition in the temperature range 20-24 K. Finally, yet another transition was also exhibited by all the samples at temperatures below 10 K and is attributed to the antiferromagnetic (AF) ordering of rare-earth ionic moments. The magnetic entropy of all the samples was also computed with the help of their heat capacity data. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of multiple phases on the evolution of texture during cold rolling and annealing of a copper-iron multilayer, fabricated by accumulative roll bonding, has been studied. The presence of an iron layer affects the deformation texture of the copper layer only at very large strains. On the other hand, a strong effect of copper on iron is observed at both small and large strains. At smaller strains, the larger deformation carried by the copper suppresses the texture development in the iron, whereas, at higher strains, selection of specific orientation relationship at the interface influences the texture of the iron layer. Shear banding and continuous dynamic recrystallization were found to influence the evolution of texture in the copper layer. The influence of large plastic deformation on the recrystallization behavior of copper is demonstrated with the suppression of typical fcc annealing texture components, described as constrained recrystallization. Evolution of typical annealing texture component is suppressed because of the multilayer microstructure. The plane of the interface formed during deformation is determined by a combination of the rolling texture of individual phases, constrained annealing, and the tendency to form a low-energy interface between the two phases during annealing.