119 resultados para Blunt Cone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents computational and experimental results on a new burner configuration with a mild combustion concept with heat release rates up to 10 MW/m(3). The burner configuration is shown to achieve mild combustion by using air at ambient temperature at high recirculation rates (similar to250%-290%) both experimentally and computationally. The principal features of the configuration are: (1) a burner with forward exit for exhaust gases; (2) injection of gaseous fuel and air as multiple, alternate, peripheral highspeed jets at the bottom at ambient temperature, thus creating high enough recirculation rates of the hot combustion products into fresh incoming reactants; and (3) use of a suitable geometric artifice-a frustum of a cone to help recirculation. The computational studies have been used to reveal the details of the flow and to optimize the combustor geometry based on recirculation rates. Measures, involving root mean square temperature fluctuations, distribution of temperature and oxidizer concentration inside the proposed burner, and a classical turbulent diffusion jet flame, are used to distinguish between them quantitatively. The system, operated at heat release rates of 2 to 10 MW/m(3) (compared to 0.02 to 0.32 MW/m(3) in the earlier studies), shows a 10-15 dB reduction in noise in the mild combustion mode compared to a simple open-top burner and exhaust NOx emission below 10 ppm for a 3 kW burner with 10% excess air. The peak temperature is measured around 1750 K, approximately 300 K lower than the peak temperature in a conventional burner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier-Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier-Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = P(OMe)(3), P(OEt)(3), PF((OPr)-Pr-i)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF4] (L = P(OMe)(3), P(OEt)(3), P((OPr)-Pr-i)(3)) using HBF4.Et2O. The cis-[(dppm)(2)Ru(H)(L)][BF4] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H-2 ligand in the dihydrogen complexes is labile, and the loss of H-2 was found to be reversible. The protonation reactions of the starting hydrides with trans PMe3 or PMe2Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dPPM)(2)Ru(BF4)Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF4], cis-[(dppm)(2)Ru-(H)(P(OMe)(3))][BF4], and cis-[(dppm)(2)Ru(H)(P((OPr)-Pr-i)(3))][BF4] complexes have been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palladium and platinum dichloride complexes of a series of symmetrically and unsymmetrically substituted 25,26;27,28-dibridged p-tert-butyl-calix[4]arene bisphosphites in which two proximal phenolic oxygen atoms of p-tert-butyl-or p-H-calix[4]arene are connected to a P(OR) ( R = substituted phenyl) moiety have been synthesized. The palladium dichloride complexes of calix[4]arene bisphosphites bearing sterically bulky aryl substituents undergo cyclometalation by C-C or C-H bond scission. An example of cycloplatinated complex is also reported. The complexes have been characterized by NMR spectroscopic and single crystal X-ray diffraction studies. During crystallization of the palladium dichloride complex of a symmetrically substituted calix[4]arene bisphosphite in dichloromethane, insertion of oxygen occurs into the Pd-P bond to give a P,O-coordinated palladium dichloride complex. The calix[4]arene framework in these bisphosphites and their metal complexes adopt distorted cone conformation; the cone conformation is more flattened in the metal complexes than in the free calix[4]arene bisphosphites. Some of these cyclometalated complexes proved to be active catalysts for Heck and Suzuki C-C cross-coupling reactions but, on an average, the yields are only modest. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-linear precoding for the downlink of a multiuser MISO (multiple-input single-output) communication system in the presence of imperfect channel state information (CSI) is considered.The base station is equipped with multiple transmit antennas and each user terminal is equipped with a single receive antenna. The CSI at the transmitter is assumed to be perturbed by an estimation error. We propose a robust minimum mean square error (MMSE) Tomlinson-Harashima precoder (THP)design, which can be formulated as an optimization problem that can be solved efficiently by the method of alternating optimization(AO). In this method of optimization, the entire set of optimization variables is partitioned into non-overlapping subsets,and an iterative sequence of optimizations on these subsets is carried out, which is often simpler compared to simultaneous optimization over all variables. In our problem, the application of the AO method results in a second-order cone program which can be numerically solved efficiently. The proposed precoder is shown to be less sensitive to imperfect channel knowledge. Simulation results illustrate the improvement in performance compared to other robust linear and non-linear precoders in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, which is solved by an iterative algorithm. The formulation is extended to non-linear classifiers using kernel methods. The resultant classifiers are applied to the case of classification of unbalanced datasets with asymmetric costs for misclassification. Experimental results on benchmark datasets show the efficacy of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a novel, scalable, clustering based Ordinal Regression formulation, which is an instance of a Second Order Cone Program (SOCP) with one Second Order Cone (SOC) constraint. The main contribution of the paper is a fast algorithm, CB-OR, which solves the proposed formulation more eficiently than general purpose solvers. Another main contribution of the paper is to pose the problem of focused crawling as a large scale Ordinal Regression problem and solve using the proposed CB-OR. Focused crawling is an efficient mechanism for discovering resources of interest on the web. Posing the problem of focused crawling as an Ordinal Regression problem avoids the need for a negative class and topic hierarchy, which are the main drawbacks of the existing focused crawling methods. Experiments on large synthetic and benchmark datasets show the scalability of CB-OR. Experiments also show that the proposed focused crawler outperforms the state-of-the-art.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of collision prediction in dynamic environments appears in several diverse fields, which include robotics, air vehicles, underwater vehicles, and computer animation. In this paper, collision prediction of objects that move in 3-D environments is considered. Most work on collision prediction assumes objects to be modeled as spheres. However, there are many instances of object shapes where an ellipsoidal or a hyperboloid-like bounding box would be more appropriate. In this paper, a collision cone approach is used to determine collision between objects whose shapes can be modeled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained in the form of analytical expressions in the relative velocity space. For objects of arbitrary shapes, exact representations of planar sections of the 3-D collision cone are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital human modeling (DHM) involves modeling of structure, form and functional capabilities of human users for ergonomics simulation. This paper presents application of geometric procedures for investigating the characteristics of human visual capabilities which are particularly important in the context mentioned above. Using the cone of unrestricted directions through the pupil on a tessellated head model as the geometric interpretation of the clinical field-of-view (FoV), the results obtained are experimentally validated. Estimating the pupil movement for a given gaze direction using Listing's Law, FoVs are re-computed. Significant variation of the FoV is observed with the variation in gaze direction. A novel cube-grid representation, which integrated the unit-cube representation of directions and the enhanced slice representation has been introduced for fast and exact point classification for point visibility analysis for a given FoV. Computation of containment frequency of every grid-cell for a given set of FoVs enabled determination of percentile-based FoV contours for estimating the visual performance of a given population. This is a new concept which makes visibility analysis more meaningful from ergonomics point-of-view. The algorithms are fast enough to support interactive analysis of reasonably complex scenes on a typical desktop computer. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable bench mark experimental database in the separated hypersonic flow regime is necessary to validate high resolution CFD codes. In this paper we report the surface pressure and heat transfer measurements carried out on double cones (first cone semi-apex angle = 15, 25 deg.; second cone semi-apex angle= 35, 68 deg.) at hypersonic speeds that will be useful for CFD code validation studies. The surface pressure measurements are carried out at nominal Mach number of 8.35 in the IISc hypersonic wind tunnel. On the other hand the surface heat transfer measurements are carried out at a nominal Mach number of 5.75 in the IISc hypersonic shock tunnel. The flow separation point on the first cone, flow reattachment on the second cone and the wild fluctuation of the transmitted shock on the second cone surface (25/68 deg. double cone) in the presence of severe adverse pressure gradient are some of the flow features captured in the measurements. The results from the CFD studies indicate good agreement with experiments in the attached flow regime while considerable differences are noticeable in the separated flow regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-pressure spray characteristics of biofuels, specifically, Pongamia oil and its blends with diesel are studied for various gas pressures. Two single-hole solenoid injectors with nozzle diameters of 200 and 260 mu m are used along with a high-pressure common-rail direct-injection system to inject fuel into a high-pressure spray visualization chamber. The spray structure is characterized using a high-speed laser-based shadowgraphy technique. The spray structure of Pongamia oil revealed the presence of an intact liquid core at low gas pressure. At high gas pressures, the spray atomization of the Pongamia oil showed marked improvement. The spray tip penetration of Pongamia oil and its blends with diesel is higher compared to that of diesel for all test conditions. The spray cone angle of Pongamia oil and 50% Pongamia oil blend with diesel is lower as compared to that of diesel. Both these observations are attributed to the presence of large droplets carrying higher momentum in oil and blend. The droplet size is measured at an injection pressure of 1000 bar and gas pressure of 30 bar at 25 mm below the nozzle tip using the particle/droplet image.analysis (PDIA) method. The droplet size measurements have shown that the Sauter mean diameter (SMD) in the spray core of Pongamia oil is more than twice that of diesel. The spray tip penetration of the 20% blend of Pongamia with diesel (P20) is similar to that of diesel but the SMD is 50% higher. Based on experimental data, appropriate spray tip penetration correlation is proposed for the vegetable oil fuels such as Pongamia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.