90 resultados para Bivariate Hermite polynomials
Resumo:
Maximality of a contractive tuple of operators is considered. A characterization for a contractive tuple to be maximal is obtained. The notion of maximality for a submodule of the Drury-Arveson module on the -dimensional unit ball is defined. For , it is shown that every submodule of the Hardy module over the unit disc is maximal. But for we prove that any homogeneous submodule or submodule generated by polynomials is not maximal. A characterization of maximal submodules is obtained.
Resumo:
Fix a prime p. Given a positive integer k, a vector of positive integers Delta = (Delta(1), Delta(2), ... , Delta(k)) and a function Gamma : F-p(k) -> F-p, we say that a function P : F-p(n) -> F-p is (k, Delta, Gamma)-structured if there exist polynomials P-1, P-2, ..., P-k : F-p(n) -> F-p with each deg(P-i) <= Delta(i) such that for all x is an element of F-p(n), P(x) = Gamma(P-1(x), P-2(x), ..., P-k(x)). For instance, an n-variate polynomial over the field Fp of total degree d factors nontrivially exactly when it is (2, (d - 1, d - 1), prod)- structured where prod(a, b) = a . b. We show that if p > d, then for any fixed k, Delta, Gamma, we can decide whether a given polynomial P(x(1), x(2), ..., x(n)) of degree d is (k, Delta, Gamma)-structured and if so, find a witnessing decomposition. The algorithm takes poly(n) time. Our approach is based on higher-order Fourier analysis.
Resumo:
Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is important to understand the effect of such noise on estimating causal relations between such signals. A primary tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal using a bivariate autoregressive (AR) process. In this paper, we greatly extend the previous analysis of the effect of noise by considering a bivariate AR process of general order p. From this analysis, we analytically obtain the dependence of Granger causality on various noise-dependent system parameters. In particular, we show that measurement noise can lead to spurious Granger causality and can suppress true Granger causality. These results are verified numerically. Finally, we show how true causality can be recovered numerically using the Kalman expectation maximization algorithm.
Resumo:
In contemporary orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE), LTE-Advanced, and WiMAX, a codeword is transmitted over a group of subcarriers. Since different subcarriers see different channel gains in frequency-selective channels, the modulation and coding scheme (MCS) of the codeword must be selected based on the vector of signal-to-noise-ratios (SNRs) of these subcarriers. Exponential effective SNR mapping (EESM) maps the vector of SNRs into an equivalent flat-fading SNR, and is widely used to simplify this problem. We develop a new analytical framework to characterize the throughput of EESM-based rate adaptation in such wideband channels in the presence of feedback delays. We derive a novel accurate approximation for the throughput as a function of feedback delay. We also propose a novel bivariate gamma distribution to model the time evolution of EESM between the times of estimation and data transmission, which facilitates the analysis. These are then generalized to a multi-cell, multi-user scenario with various frequency-domain schedulers. Unlike prior work, most of which is simulation-based, our framework encompasses both correlated and independent subcarriers and various multiple antenna diversity modes; it is accurate over a wide range of delays.
Resumo:
This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.
Resumo:
We present a physics-based closed form small signal Nonquasi-static (NQS) model for a long channel Common Double Gate MOSFET (CDG) by taking into account the asymmetry that may prevail between the gate oxide thickness. We use the unique quasi-linear relationship between the surface potentials along the channel to solve the governing continuity equation (CE) in order to develop the analytical expressions for the Y parameters. The Bessel function based solution of the CE is simplified in form of polynomials so that it could be easily implemented in any circuit simulator. The model shows good agreement with the TCAD simulation at-least till 4 times of the cut-off frequency for different device geometries and bias conditions.
B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy
Resumo:
An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).
Resumo:
In this paper we prove weighted mixed norm estimates for Riesz transforms on the Heisenberg group and Riesz transforms associated to the special Hermite operator. From these results vector-valued inequalities for sequences of Riesz transforms associated to generalised Grushin operators and Laguerre operators are deduced.
Resumo:
Let R be a (commutative) local principal ideal ring of length two, for example, the ring R = Z/p(2)Z with p prime. In this paper, we develop a theory of normal forms for similarity classes in the matrix rings M-n (R) by interpreting them in terms of extensions of R t]-modules. Using this theory, we describe the similarity classes in M-n (R) for n <= 4, along with their centralizers. Among these, we characterize those classes which are similar to their transposes. Non-self-transpose classes are shown to exist for all n > 3. When R has finite residue field of order q, we enumerate the similarity classes and the cardinalities of their centralizers as polynomials in q. Surprisingly, the polynomials representing the number of similarity classes in M-n (R) turn out to have non-negative integer coefficients.
Resumo:
We consider the problem of representing a univariate polynomial f(x) as a sum of powers of low degree polynomials. We prove a lower bound of Omega(root d/t) for writing an explicit univariate degree-d polynomial f(x) as a sum of powers of degree-t polynomials.
Resumo:
In this paper, we present the solutions of 1-D and 2-D non-linear partial differential equations with initial conditions. We approach the solutions in time domain using two methods. We first solve the equations using Fourier spectral approximation in the spatial domain and secondly we compare the results with the approximation in the spatial domain using orthogonal functions such as Legendre or Chebyshev polynomials as their basis functions. The advantages and the applicability of the two different methods for different types of problems are brought out by considering 1-D and 2-D nonlinear partial differential equations namely the Korteweg-de-Vries and nonlinear Schrodinger equation with different potential function. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7].
Resumo:
Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.
Resumo:
Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.
Resumo:
The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.