94 resultados para Biomedical and Molecular Sciences
Resumo:
Experimental ionic conductivity of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain these dependences on pressure of the ionic conductivity for all ions. We report molecular dynamics investigation of potassium chloride solution at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ions in water over the 0.001-2 kbar range. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. It also provides a microscopic picture in terms of the pore network in liquid water.
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The H-1 resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T-12 and U-15 nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T-14 stacks upon both T-12 and U-15 while T-13 partially stacks upon T-14. Very weak stacking interaction is observed between T-13 and T-12. All the individual nucleotide bases adopt 'anti' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T-13 and T-14. The stereochemistry of U-15 mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously.
Resumo:
The title compound I (24-(S)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P2(1)2(1)2(1) with Z = 4. The unit cell dimensions are a = 6.701(2)Angstrom, b = 11.506(8)Angstrom, c = 32.183(4)Angstrom, V = 2481(2)Angstrom (3), D-cal = 1.077 Mg/m(3). The tide compound II (24-(R)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P212121 with two molecules per assymetric unit and with Z = 8. The Unit cell dimensions are a = 10.954(2)Angstrom, b = 21.757(6)Angstrom, c = 21.130(7)Angstrom, V = 5035.0(2)Angstrom (3), D-cal = 1.062 Mg/m(3). In compound I and in both the molecules of compound II, the rings A, B & C are in chair conformation and the five membered ring D is in envelope conformation. The priority sequence attached to the chiral carbon C24 has "S" designation in compound I and "R" designation in compound II. The structures are stabilized by C-H . . .O and O-H---O hydrogen bonds.
Resumo:
The crystal structure of N3P3Cl4(NEt2)(NPPh3) has been determined. The crystals are orthorhombic, space group Pbca, with a= 8.208(1), b= 21.890(1), c= 31.722(2)Å, Z= 8, and m.p. = 146.5 °C. The structure was solved by direct methods and refined to a final R value of 0.045 for 2 025 independent reflections. The analysis reveals significant variations in the ring P–N bond lengths. The two nitrogenous substituents, NPPh3 and NEt2, reside on the same phosphorus atom. The latter, NEt2, has an almost exact type II conformation (the plane NC2 almost perpendicular to the local NPN plane)(the first observed for a dialkylamino-group in cyclophosphazenes), the former, NPPh3, deviates from type II towards type III (in type III the plane Pring–N–Pexo makes an angle of ca. 45° with the local N–P–N ring plane). The present structure is compared with others of triphenylphosphazenyl-cyclophosphazenes and the conformation of the NPPh3 substituent and its electron supply in the ground and perturbed states are discussed.
Resumo:
The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.
Resumo:
Condensation reaction involving substituted aminobenzoic acids (2-aminobenzoic acid and 4-aminobenzoic acid) and acetylacetone results in the formation of ketoimines [CH3C(= O)CH2C(CH3)(= NAr)] (Ar = C6H4COOH-4; 1 and C6H4COOH-2 2). Compounds 1 and 2 have been characterized by spectroscopic techniques and by single crystal X-ray diffraction studies. The absorption, emission and lifetime measurement studies have also been performed for the new compounds. While compound 1 forms a linear chain type of aggregation though intermolecular hydrogen bonding, compound 2 forms a discrete dimer in the solid state.
Resumo:
4-Alkoxy benzoic acids belong to an important class of thermotropic liquid crystals that are structurally simple and often used as starting materials for many novel mesogens. 4-Hexyloxybenzoic acid (HBA) is a homologue of the same series and exhibits an enantiotropic nematic phase. As this molecule could serve as an ideal model compound, high resolution C-13 NMR studies of HEA in solution, solid, and liquid crystalline phases have been undertaken. In the solid state, two-dimensional separation of undistorted powder patterns by effortless recoupling (2D SUPER) experiments have been carried out to estimate the magnitude of the components of the chemical shift anisotropy (GSA) tensor of all the aromatic carbons. These values have been used subsequently for calculating the orientational order parameters in the liquid crystalline phase. The GSA values computed by density functional theory (DFT) calculations showed good agreement with the 2D SUPER values. Additionally, C-13-H-1 dipolar couplings in the nematic phase have been determined by separated local field (SLF) spectroscopy at various temperatures and were used for computing the order parameters, which compared well with those calculated by using the chemical shifts. It is anticipated that the CSA values determined for MBA would be useful for the assignment of carbon chemical shifts and for the study of order and dynamics of structurally similar novel mesogens in their nematic phases.
Resumo:
Background: Interaction of non-structural protein 5A (NS5A) of Hepatitis C virus (HCV) with human kinases namely, casein kinase 1 alpha (ck1 alpha) and protein kinase R (PKR) have different functional implications such as regulation of viral replication and evasion of interferon induced immune response respectively. Understanding the structural and molecular basis of interactions of the viral protein with two different human kinases can be useful in developing strategies for treatment against HCV. Results: Serine 232 of NS5A is known to be phosphorylated by human ck1 alpha. A structural model of NS5A peptide containing phosphoacceptor residue Serine 232 bound to ck1 alpha has been generated using the known 3-D structures of kinase-peptide complexes. The substrate interacting residues in ck1 alpha has been identified from the model and these are found to be conserved well in the ck1 family. ck1 alpha - substrate peptide complex has also been used to understand the structural basis of association between ck1 alpha and its other viral stress induced substrate, tumour suppressor p53 transactivation domain which has a crystal structure available. Interaction of NS5A with another human kinase PKR is primarily genotype specific. NS5A from genotype 1b has been shown to interact and inhibit PKR whereas NS5A from genotype 2a/3a are unable to bind and inhibit PKR efficiently. This is one of the main reasons for the varied response to interferon therapy in HCV patients across different genotypes. Using PKR crystal structure, sequence alignment and evolutionary trace analysis some of the critical residues responsible for the interaction of NS5A 1b with PKR have been identified. Conclusions: The substrate interacting residues in ck1 alpha have been identified using the structural model of kinase substrate peptide. The PKR interacting NS5A 1b residues have also been predicted using PKR crystal structure, NS5A sequence analysis along with known experimental results. Functional significance and nature of interaction of interferon sensitivity determining region and variable region 3 of NS5A in different genotypes with PKR which was experimentally shown are also supported by the findings of evolutionary trace analysis. Designing inhibitors to prevent this interaction could enable the HCV genotype 1 infected patients respond well to interferon therapy.
Resumo:
Diffusion of pentane isomers in zeolites NaX has been investigated using pulsed field gradient nuclear magnetic resonance (PFG-NMR) and molecular dynamics (MD) techniques respectively. Temperature and concentration dependence of diffusivities have been studied. The diffusivities obtained from NMR are roughly an order of magnitude smaller than those obtained from MD. The dependence of diffusivity on loading at high temperatures exhibits a type I behavior according to the classification of Karger and Pfeifer 1]. NMR diffusivities of the isomers exhibit the order D(n-pentane) > D(isopentane) > D(neopentane). The results from MD suggest that the diffusivities of the isomers follow the order D(n-pentane) < D(isopentane) < D(neopentane). The activation energies from NMR show E-a(n-pentane) < E-a(isopentane) < E-a(neopentane) whereas those from MD suggest the order E-a(n-pentane) > (isopentane) > E-a(neopentane). The latter follows the predictions of levitation effect whereas those of NMR appears to be due to the presence of defects in the zeolite crystals. The differences between diffusivities estimated by NMR and MD are attributed to the longer time and length scales sampled by the NMR technique, as compared to MD. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Structural characterizations using XRD and C-13 NMR spectroscopy of two rodlike mesogens consisting of (i) three phenyl ring core with a polar cyano terminal and (ii) four phenyl ring core with flexible dodecyl terminal chain are presented. The three-ring-core mesogen with cyano terminal exhibits enantiotropic smectic A phase while the four-ring mesogen reveals polymesomorphism and shows enantiotropic nematic, smectic C, and tilted hexatic phases. The molecular organization in the three-ring mesogen is found to be partial bilayer smectic Ad type, and the interdigitation of the molecules in the neighboring layers is attributed to the presence of the polar terminal group. For the four-ring mesogen, the XRD results confirm the existence of the smectic C and the tilted hexatic mesophases. A thermal variation of the layer spacing across the smectic C phase followed by a discrete jump at the transition to the tilted hexatic phase is also observed. The tilt angles have been estimated to be about 45 degrees in the smectic C phase and about 40 degrees in tilted hexatic phase. C-13 NMR results indicate that in the mesophase the molecules are aligned parallel to the magnetic field. From the C-13-H-1 dipolar couplings determined from the 2D experiments, the overall order parameter for the three-ring mesogen in its smectic A phase has been estimated to be 0.72 while values ranging from 0.88 to 0.44 have been obtained for the four-ring mesogen as it passes from the tilted hexatic to the nematic phase. The orientations of the different rings of the core unit with respect to each other and also with respect to the long axis of the molecule have also been obtained.