97 resultados para Balance test


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In species-rich assemblages, differential utilization of vertical space can be driven by resource availability. For animals that communicate acoustically over long distances under habitat-induced constraints, access to an effective transmission channel is a valuable resource. The acoustic adaptation hypothesis suggests that habitat acoustics imposes a selective pressure that drives the evolution of both signal structure and choice of calling sites by signalers. This predicts that species-specific signals transmit best in native habitats. In this study, we have tested the hypothesis that vertical stratification of calling heights of acoustically communicating species is driven by acoustic adaptation. This was tested in an assemblage of 12 coexisting species of crickets and katydids in a tropical wet evergreen forest. We carried out transmission experiments using natural calls at different heights from the forest floor to the canopy. We measured signal degradation using 3 different measures: total attenuation, signal-to-noise ratio (SNR), and envelope distortion. Different sets of species supported the hypothesis depending on which attribute of signal degradation was examined. The hypothesis was upheld by 5 species for attenuation and by 3 species each for SNR and envelope distortion. Only 1 species of 12 provided support for the hypothesis by all 3 measures of signal degradation. The results thus provided no overall support for acoustic adaptation as a driver of vertical stratification of coexisting cricket and katydid species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linkage of rigid bodies under gravity loads can be statically counter-balanced by adding compensating gravity loads. Similarly, gravity loads or spring loads can be counterbalanced by adding springs. In the current literature, among the techniques that add springs, some achieve perfect static balance while others achieve only approximate balance. Further, all of them add auxiliary bodies to the linkage in addition to springs. We present a perfect static balancing technique that adds only springs but not auxiliary bodies, in contrast to the existing techniques. This technique can counter-balance both gravity loads and spring loads. The technique requires that every joint that connects two bodies in the linkage be either a revolute joint or a spherical joint. Apart from this, the linkage can have any number of bodies connected in any manner. In order to achieve perfect balance, this technique requires that all the spring loads have the feature of zero-free-length, as is the case with the existing techniques. This requirement is neither impractical nor restrictive since the feature can be practically incorporated into any normal spring either by modifying the spring or by adding another spring in parallel. DOI: 10.1115/1.4006521]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier's health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be -ve 0.19 m, -ve 0.27 m and -ve 0.2 m respectively. It is 0.05 m, -ve 0.11 m and -ve 0.19 m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83 kmA(3) of glacier in the monitoring period of 3 years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power converters burn-in test consumes large amount of energy, which increases the cost of testing, and certification, in medium and high power application. A simple test configuration to test a PWM rectifier induction motor drive, using a Doubly Fed Induction Machine (DFIM) to circulate power back to the grid for burn-in test is presented. The test configuration makes use of only one power electronic converter, which is the converter to be tested. The test method ensures soft synchronization of DFIM and Squirrel Cage Induction Machine (SCIM). A simple volt per hertz control of the drive is sufficient for conducting the test. To synchronize the DFIM with SCIM, the rotor terminal voltage of DFIM is measured and used as an indication of speed mismatch between DFIM and SCIM. The synchronization is done when the DFIM rotor voltage is at its minimum. Analysis of the DFIM characteristics confirms that such a test can be effectively performed with smooth start up and loading of the test setup. After synchronization is obtained, the speed command to SCIM is changed in order to load the setup in motoring or regenerative mode of operation. The experimental results are presented that validates the proposed test method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before installation, a voltage source converter is usually subjected to heat-run test to verify its thermal design and performance under load. For heat-run test, the converter needs to be operated at rated voltage and rated current for a substantial length of time. Hence, such tests consume huge amount of energy in case of high-power converters. Also, the capacities of the source and loads available in the research and development (R&D) centre or the production facility could be inadequate to conduct such tests. This paper proposes a method to conduct heat-run tests on high-power, pulse width modulated (PWM) converters with low energy consumption. The experimental set-up consists of the converter under test and another converter (of similar or higher rating), both connected in parallel on the ac side and open on the dc side. Vector-control or synchronous reference frame control is employed to control the converters such that one draws certain amount of reactive power and the other supplies the same; only the system losses are drawn from the mains. The performance of the controller is validated through simulation and experiments. Experimental results, pertaining to heat-run tests on a high-power PWM converter, are presented at power levels of 25 kVA to 150 kVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of explosives, especially trinitrotoluene (TNT), is of utmost importance due to its highly explosive nature and environmental hazard. Therefore, detection of TNT has been a matter of great concern to the scientific community worldwide. Herein, a new aggregation-induced phosphorescent emission (AIPE)-active iridium(III) bis(2-(2,4-difluorophenyl)pyridinato-NC2') (2-(2-pyridyl)benzimidazolato-N,N') complex FIrPyBiz] has been developed and serves as a molecular probe for the detection of TNT in the vapor phase, solid phase, and aqueous media. In addition, phosphorescent test strips have been constructed by impregnating Whatman filter paper with aggregates of FIrPyBiz for trace detection of TNT in contact mode, with detection limits in nanograms, by taking advantage of the excited state interaction of AIPE-active phosphorescent iridium(III) complex with that of TNT and the associated photophysical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme for built-in self-test of analog signals with minimal area overhead for measuring on-chip voltages in an all-digital manner is presented. The method is well suited for a distributed architecture, where the routing of analog signals over long paths is minimized. A clock is routed serially to the sampling heads placed at the nodes of analog test voltages. This sampling head present at each test node, which consists of a pair of delay cells and a pair of flip-flops, locally converts the test voltage to a skew between a pair of subsampled signals, thus giving rise to as many subsampled signal pairs as the number of nodes. To measure a certain analog voltage, the corresponding subsampled signal pair is fed to a delay measurement unit to measure the skew between this pair. The concept is validated by designing a test chip in a UMC 130-nm CMOS process. Sub-millivolt accuracy for static signals is demonstrated for a measurement time of a few seconds, and an effective number of bits of 5.29 is demonstrated for low-bandwidth signals in the absence of sample-and-hold circuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6 +/- 1 Gta(-1), which decreases about sixfold to -35 +/- 2 Gta(-1) by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12 +/- 2 Gta(-1) by the 2080s. We also find that 10.6 and 27 % of the glaciers could face `eventual disappearance' by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we applied the integration methodology developed in the companion paper by Aires (2014) by using real satellite observations over the Mississippi Basin. The methodology provides basin-scale estimates of the four water budget components (precipitation P, evapotranspiration E, water storage change Delta S, and runoff R) in a two-step process: the Simple Weighting (SW) integration and a Postprocessing Filtering (PF) that imposes the water budget closure. A comparison with in situ observations of P and E demonstrated that PF improved the estimation of both components. A Closure Correction Model (CCM) has been derived from the integrated product (SW+PF) that allows to correct each observation data set independently, unlike the SW+PF method which requires simultaneous estimates of the four components. The CCM allows to standardize the various data sets for each component and highly decrease the budget residual (P - E - Delta S - R). As a direct application, the CCM was combined with the water budget equation to reconstruct missing values in any component. Results of a Monte Carlo experiment with synthetic gaps demonstrated the good performances of the method, except for the runoff data that has a variability of the same order of magnitude as the budget residual. Similarly, we proposed a reconstruction of Delta S between 1990 and 2002 where no Gravity Recovery and Climate Experiment data are available. Unlike most of the studies dealing with the water budget closure at the basin scale, only satellite observations and in situ runoff measurements are used. Consequently, the integrated data sets are model independent and can be used for model calibration or validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar photovoltaic power plants are ideally located in regions with high insolation levels. Photovoltaic performance is affected by high cell temperatures, soiling, mismatch and other balance-of-systems related losses. It is crucial to understand the significance of each of these losses on system performance. Soiling, highly dependent on installation conditions, is a complex performance issue to accurately quantify. The settlement of dust on panel surfaces may or may not be uniform depending on local terrain and environmental factors such as ambient temperature, wind and rainfall. It is essential to investigate the influence of dust settlement on the operating characteristics of photovoltaic systems to better understand losses in performance attributable to soiling. The current voltage (I-V) characteristics of photovoltaic panels reveal extensive information to support degradation analysis of the panels. This paper attempts to understand performance losses due to dust through a dynamic study into the I-V characteristics of panels under varying soiling conditions in an outdoor experimental test-bed. Further, the results of an indoor study simulating the performance of photovoltaic panels under different dust deposition regimes are discussed in this paper. (C) 2014 Monto Mani. Published by Elsevier Ltd. This is all open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K+ conductance, but not in M-type K+ conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (R-in) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, R in, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.