335 resultados para BANDWIDTH HUNGRY APPLICATIONS
Resumo:
Fractal Dimensions (FD) are one of the popular measures used for characterizing signals. They have been used as complexity measures of signals in various fields including speech and biomedical applications. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency, number of harmonics, noise power and signal bandwidth. We have used Higuchi's method for estimating FDs. This study may help in gaining a better understanding of the FD complexity measure itself, and for interpreting changing structural complexity of signals in terms of FD. Our results indicate that FD is a useful measure in quantifying structural changes in signal properties.
Resumo:
A simple and efficient algorithm for the bandwidth reduction of sparse symmetric matrices is proposed. It involves column-row permutations and is well-suited to map onto the linear array topology of the SIMD architectures. The efficiency of the algorithm is compared with the other existing algorithms. The interconnectivity and the memory requirement of the linear array are discussed and the complexity of its layout area is derived. The parallel version of the algorithm mapped onto the linear array is then introduced and is explained with the help of an example. The optimality of the parallel algorithm is proved by deriving the time complexities of the algorithm on a single processor and the linear array.
Resumo:
Programmable pulse generator (PPG) circuits using programmable interval timer chips are normally based on a PC or a microprocessor. We describe here a simple low cost programmable two-pulse generator using Intel 8253s in a stand-alone mode, eliminating the need for a PC or a microprocessor, though our design also can be operated via a PC or a microprocessor.
Resumo:
A computer-controlled laser writing system for optical integrated circuits and data storage is described. The system is characterized by holographic (649F) and high-resolution plates. A minimum linewidth of 2.5 mum is obtained by controlling the system parameters. We show that this system can also be used for data storage applications.
Resumo:
High quality, single-crystalline alpha-MoO3 nanofibers are synthesized by rapid hydrothermal method using a polymeric nitrosyl-complex of molybdenum(II) as molybdenum source without employing catalysts, surfactants, or templates. The possible reaction pathway is decomposition and oxidation of the complex to the polymolybdate and then surface condensation on the energetically favorable 001] direction in the initially formed nuclei of solid alpha-MoO3 under hydrothermal conditions. Highly crystalline alpha-MoO3 nanofibers have grown along 001] with lengths up to several micrometres and widths ranging between 280 and 320 nm. The alpha-MoO3 nanofibers exhibit desirable electrochemical properties such as high capacity reversibility as a cathode material of a Li-ion battery.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 tunable multilayer thin film has been fabricated by pulsed laser ablation and characterized. Phase composition and microstructure of multilayer films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The film has very smooth surface with RMS roughness of 1.5-2nm and grain size of 100-150 nm. Total film thickness has been measure to be 375 nm. The BZN thin films at 300 K, on Pt(1 1 1)/SiO2/Si substrate showed zero-field dielectric constant of 105 and dielectric loss tangent of 0.002 at frequency of 0.1 MHz. Thin films annealed at 700 degrees C shows the dielectric tunability of 18% with biasing field 500 kV/cm at 0.1 MHz. The multilayer thin film shows nonferroelectric behavior at room temperature. The good physical and electrical properties of multilayer thin films make them promising candidate for tunable microwave device applications. (C) 2010 Elsevier B.V. All rights reserved.
Analyzing Cache Performance Bottlenecks of STM Applications and addressing them with Compiler's help
Resumo:
Software transactional memory (STM) is a promising programming paradigm for shared memory multithreaded programs as an alternative to traditional lock based synchronization. However adoption of STM in mainstream software has been quite low due to its considerable overheads and its poor cache/memory performance. In this paper, we perform a detailed study of the cache behavior of STM applications and quantify the impact of different STM factors on the cache misses experienced by the applications. Based on our analysis, we propose a compiler driven Lock-Data Colocation (LDC), targeted at reducing the cache overheads on STM. We show that LDC is effective in improving the cache behavior of STM applications by reducing the dcache miss latency and improving execution time performance.
Resumo:
The performance of a program will ultimately be limited by its serial (scalar) portion, as pointed out by Amdahl′s Law. Reported studies thus far of instruction-level parallelism have mixed data-parallel program portions with scalar program portions, often leading to contradictory and controversial results. We report an instruction-level behavioral characterization of scalar code containing minimal data-parallelism, extracted from highly vectorized programs of the PERFECT benchmark suite running on a Cray Y-MP system. We classify scalar basic blocks according to their instruction mix, characterize the data dependencies seen in each class, and, as a first step, measure the maximum intrablock instruction-level parallelism available. We observe skewed rather than balanced instruction distributions in scalar code and in individual basic block classes of scalar code; nonuniform distribution of parallelism across instruction classes; and, as expected, limited available intrablock parallelism. We identify frequently occurring data-dependence patterns and discuss new instructions to reduce latency. Toward effective scalar hardware, we study latency-pipelining trade-offs and restricted multiple instruction issue mechanisms.
Resumo:
The constructional details of an 18-bit binary inductive voltage divider (IVD) for a.c. bridge applications is described. Simplified construction with less number of windings, interconnection of winding through SPDT solid state relays instead of DPDT relays, improves reliability of IVD. High accuracy for most precision measurement achieved without D/A converters. The checks for self consistency in voltage division shows that the error is less than 2 counts in 2(18).
Resumo:
Large external memory bandwidth requirement leads to increased system power dissipation and cost in video coding application. Majority of the external memory traffic in video encoder is due to reference data accesses. We describe a lossy reference frame compression technique that can be used in video coding with minimal impact on quality while significantly reducing power and bandwidth requirement. The low cost transformless compression technique uses lossy reference for motion estimation to reduce memory traffic, and lossless reference for motion compensation (MC) to avoid drift. Thus, it is compatible with all existing video standards. We calculate the quantization error bound and show that by storing quantization error separately, bandwidth overhead due to MC can be reduced significantly. The technique meets key requirements specific to the video encode application. 24-39% reduction in peak bandwidth and 23-31% reduction in total average power consumption are observed for IBBP sequences.
Resumo:
We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.
Resumo:
In this article, we use some spectral properties of polynomials presented in 1] and map an auto-correlation sequence to a set of Line Spectral Frequencies(LSFs) and reflection coefficients. This novel characterization of an auto-correlation sequence is used to obtain a lattice structure of a Linear-Phase(LP) FIR filter.
Explicit and Optimal Exact-Regenerating Codes for the Minimum-Bandwidth Point in Distributed Storage
Resumo:
In the distributed storage setting that we consider, data is stored across n nodes in the network such that the data can be recovered by connecting to any subset of k nodes. Additionally, one can repair a failed node by connecting to any d nodes while downloading beta units of data from each. Dimakis et al. show that the repair bandwidth d beta can be considerably reduced if each node stores slightly more than the minimum required and characterize the tradeoff between the amount of storage per node and the repair bandwidth. In the exact regeneration variation, unlike the functional regeneration, the replacement for a failed node is required to store data identical to that in the failed node. This greatly reduces the complexity of system maintenance. The main result of this paper is an explicit construction of codes for all values of the system parameters at one of the two most important and extreme points of the tradeoff - the Minimum Bandwidth Regenerating point, which performs optimal exact regeneration of any failed node. A second result is a non-existence proof showing that with one possible exception, no other point on the tradeoff can be achieved for exact regeneration.