503 resultados para BAND-STRUCTURES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of lithium, sodium, magnesium, and calcium complexes of NJ-dimethylformamide (DMF) have been investigated by X-ray crystallography. Complexes with the formulas LiCl.DMF.1/2H20, NaC104.2DMF, CaC12.2DMF.2H20, and Mg(C104)2.6DMF crystallized in space groups P2]/c, P2/c, Pi, and Ella, respectively, with the following cell dimensions: Li complex, a = 13.022 (7) A, b = 5.978 (4) A, c = 17.028 (10) A, = 105.48 (4)O, Z = 8; Na complex, a = 9.297 (4)A, b = 10.203 (3) A, c = 13.510 (6) A, /3 = 110.08 (4)O, Z = 4; Ca complex, a = 6.293 (4) A, b = 6.944 (2) A, c = 8.853(5) A, a = 110.15 (3)O, /3 = 105.60 (6)", y = 95.34 (5)", Z = 1; Mg complex, a = 20.686 (11) A, b = 10.962 (18) A,c = 14.885 (9) A, /3 = 91.45 (5)O, Z = 4. Lithium is tetrahedrally coordinated while the other three cations are octahedrally coordinated; the observed metal-oxygen distances are within the ranges generally found in oxygen donor complexes of these metals. The lithium and sodium complexes are polymeric, with the amide and the anion forming bridging groups between neighboring cations. The carbonyl distances become longer in the complexes accompanied by a proportionate decrease in the length of the central C-N bond of the amide; the N-C bond of the dimethylamino group also shows some changes in the complexes. The cations do not deviate significantly from the lone-pair direction of the amide carbonyl and remain in the amide plane. Infrared spectra of the complexes reflect the observed changes in the amide bond distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The situation normally encountered in the high-resolution refinement of protein structures is one in which the inaccurate positions of P out of a total of N atoms are known whereas those of the remaining atoms are unknown. Fourier maps with coefficients (FN -- F'P) × exp (i[alpha]'P) and (mFN -- nF'P) exp (i[alpha]'P), where FN is the observed structure factor and F'P and [alpha]'P are the magnitude and the phase angle of the calculated structure factor corresponding to the inaccurate atomic positions, are often used to correct the positions of the P atoms and to determine those of the Q unknown atoms. A general theoretical approach is presented to elucidate the effect of errors in the positions of the known atoms on the corrected positions of the known atoms and the positions of the unknown atoms derived from such maps. The theory also leads to the optimal choice of parameters used in the different syntheses. When the errors in the positions of the input atoms are systematic, their effects are not taken care of automatically by the syntheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of an Ultra Wide Band (UWB) filter over 3.1 GHz to 10.6 GHz using broad side coupled and spur lines in microstrip medium suitable for UWB communications has been presented in this paper. Parameters of broad side coupled lines have been appropriately chosen to achieve ultra wide band response. Spur lines have been incorporated at the input and output feed lines of the filter to improve the stop band rejection characteristics of the filter. Filter has been analyzed based on circuit models and full wave simulations. Experimental results of the filter designed using the proposed structure has been verified against the results obtained from circuit models and full wave simulations. The results match satisfactorily. Stop band rejection of better than 20 dB was obtained over the frequencies of 13 GHz to 18.2 GHz. Overall size of the filter is 40 x 18 x 0.787 mm(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placzek [1] was the first to derive general expressions for the intensities of overtones in case of Raman scattering. He assumed electrical anharmonicity. However, he left the expressions for the derivations of the polarizability tensor undetermined. In 1941, a classical and semiempirical theory was developed by Wolkenstein [2]. He assumed the validity of the additivity of bond polarizabilities. However, the expressions derived by him for the intensities of overtones remain yet to be verified. It is the purpose of this paper to derive a formula for Raman polarizability tensor for overtones of (intramolecular) vibrational spectra along the lines of Kondilenko et al. [3,4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendrite structures of ice produced on undirectional solidification of ternary and quaternary aqueous solutions have been studied. Upon freezing, solutions containing more than one solute produce plate-shaped dendrites of ice. The spacing between dendrites increase linearly with the distance from the chill surface and the square root of local solidification time (or square root of inverse freezing rate) for any fixed composition. For fixed freezing conditions, the dendrite spacings from multicomponent aqueous solutions were a function of the concentrations and diffusion coefficients of the individual solutes. The dendrite spacing produced by freezing of a solution was changed by the addition of a solute different from those already present. If the main diffusion coefficient of the added solute is higher than that of solutes already present, the dendrite spacing is increased and vice versa. The dendrite spacing in multi-component systems increases with the total solute concentration if the constituent solutes are present in equal amounts. The dendrite spacing obtained on freezing of these dilute multicomponent solutions can be expressed by regression equations of the type Image Full-size image (2K) where L is the dendrite spacing in microns, C1, C2 and C3 are concentrations of individual solutes, Θf is the total freezing time and A1 −A8 are constants. A Yates analysis of the dendrite spacings in a factorial design of quaternary solutions indicates that there are strong interactions between individual solutes in regard to their effect on the dendrite spacings. A mass transport analysis has been used to calculate the interdendritic supersaturation ΔC of the individual solutes, the supercooling in the interdendritic liquid ΔT, and the transverse growth velocity of the dendrites, VT. In ternary solutions if two solutes are present in equal amount the supersaturation of the solute with higher main diffusion coefficient is lower, and vice versa. If a solute with higher main diffusion coefficient is added to a binary solution, the interface growth velocity, the interdendritic supersaturation of the base solute and the interdendritic supercooling increase with the quantity of solute added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of a variety of compounds isolated in reactions and elucidated with the help of spectral (uv,ir,nmr and mass) data, have been discussed. In a few cases, the assigned structures were confirmed by x-ray crystal structure analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Infrared studies of synthetic alamethicin fragments and model peptides containing a-aminoisobutyric acid (Aib) have been carried out in solution. Tripeptides and larger fragments exhibit a strong tendency to form /3 turns, stabilized by 4 - 1 10-atom hydrogen bonds. Dipeptides show less well-defined structures, though C5 and C7 conformations are detectable. Conformational restrictions imposed by Aib residues result in these peptides populating a limited range of states. Integrated intensities of the hydrogen-bonded N-H stretching band can be used to quantitate the number of intramolecular hydrogen bonds. Predictions made from infrared data are in excellent agreement with nuclear magnetic resonance and X-ray diffraction studies. Assignments of the urethane and tertiary amide carbonyl groups in the free state have been made in model peptides. Shifts to lower frequency on hydrogen bonding are observed for the carbonyl groups. The 1-6 segment of alamethicin is shown to adopt a 310 helical structure stabilized by four intramolecular hydrogen bonds. The fragments Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-1 6) and Boc-Gly-Leu-Aib-Pro-Val-Aib-OMe (1 1-1 6) possess structures involving 4 - 1 and 5 - 1 hydrogen bonds. Supporting evidence for these structures is obtained from proton nuclear magnetic resonance studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiconductor with almost overlapping conduction bands b and c is considered. It is found that an attractive interaction leading to superconductivity can be induced between electrons in the conduction band b by a strong radiation field of monochromatic photons whose energy differs slightly from the band gap Ebc. The mechanism is the exchange of a photon and a phonon between the interacting electrons and the interaction is found to be proportional to the photon density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural stability of small sized nonstoichiometric CdS nano clusters between zincblende and wurtzite structures has been investigated using first-principles density functional calculations. Our study shows that the relative stability of these two structures depends sensitively on whether the surface is S-terminated or Cd-terminated. The associated band gap also exhibits non-monotonic behavior as a function of cluster size. Our findings may shed light on contradictory reports of experimentally observed structures of CdS nano clusters found in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 44.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal and molecular structures of C ,,H,IN302 (I) and C14HIsN302 (II) have been determined by direct methods using three-dimensional X-ray diffractometer data. Crystals of (I) are orthorhombic, space group Pna21, with a = 14.662(6), b = 10.492(5), c = 7.375 (3)A, Z = 4, V = 1134.5 A 3, D O = 1.25 (by flotation), D e = 1.269 Mgm -a, g(MoKa) = 0.085 mm -1. Crystals of (II) are monoclinic, space group P21/a, with a = 7.886 (5), b = 22.011 (8), c = 8.100 (3) A, fl = 103.12 (5) °, Z = 4, V = 1369.2 A 3, D O = 1.23 (by flotation), D e = 1.255 Mg m -3, g(Mo Kct) = 0.080 mm -1. Least-squares full-matrix refinement based on 782 (I) and 1400 independent reflections (II) converged at R = 0.040 (I) and 0.042 (II). The effect of electron-withdrawing substituents on the geometry of the cyclopropane ring is discussed.