164 resultados para Automatic selection
Resumo:
In this work, we explore simultaneous design and material selection by posing it as an optimization problem. The underlying principles for our approach are Ashby's material selection procedure and structural optimization. For the simplicity and ease of initial implementation of the general procedure, truss structures under static load are considered in this work in view of maximum stiffness, minimum weight/cost and safety against failure. Along the lines of Ashby's material indices, a new design index is derived for trusses. This helps in choosing the most suitable material for any design of a truss. Using this, both the design space and material database are searched simultaneously using optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous even though the material selection is an inherently discrete problem.
Resumo:
This paper presents a new algorithm for extracting Free-Form Surface Features (FFSFs) from a surface model. The extraction algorithm is based on a modified taxonomy of FFSFs from that proposed in the literature. A new classification scheme has been proposed for FFSFs to enable their representation and extraction. The paper proposes a separating curve as a signature of FFSFs in a surface model. FFSFs are classified based on the characteristics of the separating curve (number and type) and the influence region (the region enclosed by the separating curve). A method to extract these entities is presented. The algorithm has been implemented and tested for various free-form surface features on different types of free-form surfaces (base surfaces) and is found to correctly identify and represent the features irrespective of the type of underlying surface. The representation and extraction algorithm are both based on topology and geometry. The algorithm is data-driven and does not use any pre-defined templates. The definition presented for a feature is unambiguous and application independent. The proposed classification of FFSFs can be used to develop an ontology to determine semantic equivalences for the feature to be exchanged, mapped and used across PLM applications. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
VLBI observations at 6 cm reported of several weak radio cores of normal and Seyfert galaxies, of radio sources which have jets or a head tail morphology as well as some stronger cores of flat spectrum galaxies from the NRAO-Bonn "S 4", survey. Nearly all sources were detected at an angular resolution of approximately 15 milli arc s. Some of the sources are resolved at this level.
Resumo:
Ergonomic design of products demands accurate human dimensions-anthropometric data. Manual measurement over live subjects, has several limitations like long time, required presence of subjects for every new measurement, physical contact etc. Hence the data currently available is limited and anthropometric data related to facial features is difficult to obtain. In this paper, we discuss a methodology to automatically detect facial features and landmarks from scanned human head models. Segmentation of face into meaningful patches corresponding to facial features is achieved by Watershed algorithms and Mathematical Morphology tools. Many Important physiognomical landmarks are identified heuristically.
Resumo:
Aqueous solutions of Al and Mg nitrates have been spray pyrolysed at 673 K to synthesize powders with compositions varying between MgO and MgAl2O4. This has been carried out with the aim of studying phase selection and phase evolution in this system. The powders have been subsequently heat treated and the sequence of phases characterised by X-ray diffraction and transmission electron microscopy. Metastable extensions of the different phase fields have been calculated based on functions which predict the equilibrium phase diagram accurately. The appearance of phases is closely related to the temperature and to the non-stoichiometry in different compositional ranges of the system. The sequence of phase evolution has been correlated to the thermodynamics of nucleation in the system.
Resumo:
This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.
Resumo:
A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.
Resumo:
This paper presents a methodology for selection of static VAR compensator location based on static voltage stability analysis of power systems. The analysis presented here uses the L-index of load buses, which includes voltage stability information of a normal load flow and is in the range of 0 (no load of system) to 1 (voltage collapse). An approach has been presented to select a suitable size and location of static VAR compensator in an EHV network for system voltage stability improvement. The proposed approach has been tested under simulated conditions on a few power systems and the results for a sample radial network and a 24-node equivalent EHV power network of a practical system are presented for illustration purposes. © 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
An energy-momentum conserving time integrator coupled with an automatic finite element algorithm is developed to study longitudinal wave propagation in hyperelastic layers. The Murnaghan strain energy function is used to model material nonlinearity and full geometric nonlinearity is considered. An automatic assembly algorithm using algorithmic differentiation is developed within a discrete Hamiltonian framework to directly formulate the finite element matrices without recourse to an explicit derivation of their algebraic form or the governing equations. The algorithm is illustrated with applications to longitudinal wave propagation in a thin hyperelastic layer modeled with a two-mode kinematic model. Solution obtained using a standard nonlinear finite element model with Newmark time stepping is provided for comparison. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Receive antenna selection (AS) has been shown to maintain the diversity benefits of multiple antennas while potentially reducing hardware costs. However, the promised diversity gains of receive AS depend on the assumptions of perfect channel knowledge at the receiver and slowly time-varying fading. By explicitly accounting for practical constraints imposed by the next-generation wireless standards such as training, packetization and antenna switching time, we propose a single receive AS method for time-varying fading channels. The method exploits the low training overhead and accuracy possible from the use of discrete prolate spheroidal (DPS) sequences based reduced rank subspace projection techniques. It only requires knowledge of the Doppler bandwidth, and does not require detailed correlation knowledge. Closed-form expressions for the channel prediction and estimation error as well as symbol error probability (SEP) of M-ary phase-shift keying (MPSK) for symbol-by-symbol receive AS are also derived. It is shown that the proposed AS scheme, after accounting for the practical limitations mentioned above, outperforms the ideal conventional single-input single-output (SISO) system with perfect CSI and no AS at the receiver and AS with conventional estimation based on complex exponential basis functions.
Resumo:
In a communication system in which K nodes communicate with a central sink node, the following problem of selection often occurs. Each node maintains a preference number called a metric, which is not known to other nodes. The sink node must find the `best' node with the largest metric. The local nature of the metrics requires the selection process to be distributed. Further, the selection needs to be fast in order to increase the fraction of time available for data transmission using the selected node and to handle time-varying environments. While several selection schemes have been proposed in the literature, each has its own shortcomings. We propose a novel, distributed selection scheme that generalizes the best features of the timer scheme, which requires minimal feedback but does not guarantee successful selection, and the splitting scheme, which requires more feedback but guarantees successful selection. The proposed scheme introduces several new ideas into the design of the timer and splitting schemes. It explicitly accounts for feedback overheads and guarantees selection of the best node. We analyze and optimize the performance of the scheme and show that it is scalable, reliable, and fast. We also present new insights about the optimal timer scheme.
Resumo:
We implement two energy models that accurately and comprehensively estimates the system energy cost and communication energy cost for using Bluetooth and Wi-Fi interfaces. The energy models running on a system is used to smartly pick the most energy optimal network interface so that data transfer between two end points is maximized.