269 resultados para Anisotropic Hardening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoscale deformation in the tribolayer of an Al–Mg alloy is studied using an in situ mechanical probe in a transmission electron microscope. The sample is strained locally at room temperature and the deformation is observed in real time. It is observed that when the tungsten probe comes into contact with the tribolayer, the material exhibits further hardening followed by material removal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystals growing from solution, the vapour phase and from supercooled melt exhibit, as a rule, planar faces. The geometry and distribution of dislocations present within the crystals thus grown are strongly related to the growth on planar faces and to the different growth sectors rather than the physical properties of the crystals and the growth methods employed. As a result, many features of generation and geometrical arrangement of defects are common to extremely different crystal species. In this paper these commoner aspects of dislocation generation and configuration which permits one to predict their nature and distribution are discussed. For the purpose of imaging the defects a very versatile and widely applicable technique viz. x-ray diffraction topography is used. Growth dislocations in solution grown crystals follow straight path with strongly defined directions. These preferred directions which in most cases lie within an angle of ±15° to the growth normal depend on the growth direction and on the Burger's vector involved. The potential configuration of dislocations in the growing crystals can be evaluated using the theory developed by Klapper which is based on linear anisotropic elastic theory. The preferred line direction of a particular dislocation corresponds to that in which the dislocation energy per unit growth length is a minimum. The line direction analysis based on this theory enables one to characterise dislocations propagating in a growing crystal. A combined theoretical analysis and experimental investigation based on the above theory is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate ordered array formation of Au nanoparticles by controlled solid-state dewetting of a metal film on stepped alumina substrates. In situ transmission electron microscopy studies reveal that the dewetting process starts with nucleation of ordered dry regions on the substrate. The chemical potential difference between concave and convex surface regions induces anisotropic metal diffusion leading to the formation of nanowires in the valleys. The nanowires fragment due to Rayleigh instability forming arrays of metal nanoparticles on the substrate. The length scale of reconstruction relative to the starting film thickness is an important parameter in controlling the spatial order of the nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The grain size dependencies of the yield and fracture stresses in hot rolled Mg-12.7 at % Cd alloy have been measured in the temperature range 77 to 420 K and are found to be in accordance with HalI-Petch type of equations. In hot rolled Mg-12.7 Cd alloy, the HalI-Petch intercept a w is higher than that in hot rolled magnesium, while the slope ky is comparable. The fracture is intercrystalline at 77 K, mixed mode at 300 K and ductile at 420 K. The above flow and fracture behaviours are interpreted in terms of the complimentary effects of texture hardening and solid solution strengthening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element analysis of laminated shells reinforced with laminated stiffeners is described in this paper. A rectangular laminated anisotropic shallow thin shell finite element of 48 d.o.f. is used in conjunction with a laminated anisotropic curved beam and shell stiffening finite element having 16 d.o.f. Compatibility between the shell and the stiffener is maintained all along their junction line. Some problems of symmetrically stiff ened isotropic plates and shells have been solved to evaluate the performance of the present method. Behaviour of an eccentrically stiffened laminated cantilever cylindrical shell has been predicted to show the ability of the present program. General shells amenable to rectangular meshes can also be solved in a similar manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic susceptibility studies on single crystals of nearly stoichiometric La2NiO4 with the applied field both parallel and perpendicular to the c axis show a transition at 204 K below which two-dimensional canted antiferromagnetic order seems to exist. This oxide also undergoes a transition from isotropic to anisotropic susceptibility near 100 and 250 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element analysis of laminated shells of revolution reinforced with laminated stifieners is described here-in. A doubly curved quadrilateral laminated anisotropic shell of revolution finite element of 48 d.o.f. is used in conjunction with two stiffener elements of 16 d.o.f. namely: (i) A laminated anisotropic parallel circle stiffener element (PCSE); (ii) A laminated anisotropic meridional stiffener element (MSE). These stifiener elements are formulated under line member assumptions as degenerate cases of the quadrilateral shell element to achieve compatibility all along the shell-stifiener junction lines. The solutions to the problem of a stiffened cantilever cylindrical shell are used to check the correctness of the present program while it's capability is shown through the prediction of the behavior of an eccentrically stiffened laminated hyperboloidal shell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work is to study the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals under mode I, plane strain, small scale yielding (SSY) conditions. To this end, finite element simulations are performed within crystal plasticity framework neglecting elastic anisotropy. Attention is focussed on the effects of crystal hardening, ratio of void diameter to spacing from the notch and crystal orientation on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. Further, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. Also, a strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Finally, the synergistic, cooperative growth of multiple voids ahead of the notch tip is examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element analysis of laminated shells reinforced with laminated stiffeners is described in this paper. A rectangular laminated anisotropic shallow thin shell finite element of 48 d.o.f. is used in conjunction with a laminated anisotropic curved beam and shell stiffening finite element having 16 d.o.f. Compatibility between the shell and the stiffener is maintained all along their junction line. Some problems of symmetrically stiffened isotropic plates and shells have been solved to evaluate the performance of the present method. Behaviour of an eccentrically stiffened laminated cantilever cylindrical shell has been predicted to show the ability of the present program. General shells amenable to rectangular meshes can also be solved in a similar manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tensile experiments on a fine-grained single-phase Mg–Zn–Al alloy (AZ31) at 673 K revealed superplastic behavior with an elongation to failure of 475% at 1 × 10−4 s−1 and non-superplastic behavior with an elongation to failure of 160% at 1 × 10−2 s−1; the corresponding strain rate sensitivities under these conditions were 0.5 and 0.2, respectively. Measurements indicated that the grain boundary sliding (GBS) contribution to strain ξ was 30% under non-superplastic conditions; there was also a significant sharpening in texture during such deformation. Under superplastic conditions, ξ was 50% at both low and high elongations of 20% and 120%; the initial texture became more random under such conditions. In non-superplastic conditions, deformation occurred under steady-state conditions without grain growth before significant flow localization whereas, under superplastic conditions, there was grain growth during the early stages of deformation, leading to strain hardening. The grains retained equiaxed shapes under all experimental conditions. Superplastic deformation is attributed to GBS, while non-superplastic deformation is attributed to intragranular dislocation creep with some contribution from GBS. The retention of equiaxed grain shapes during dislocation creep is consistent with a model based on local recovery related to the disturbance of triple junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(i) Incistrans pairs of cyclic 1,3-dicarboxylic acid ethyl esters thecis-foms exhibit higher O-methylene proton (HA, HB) anisochrony than thetrans-forms; (ii) anisochrony, easily observed in certain decalin-10-carboxylic ethyl esters, ‘disappears’ on one of the rings attaining the possibility of transforming into a ‘twist’ form; (iii) in certain pairs of chiralsecethyl esters and theirtert-methylated analogues anisochrony is higher in the latter, contrary to expectation, while, in certain others, the reverse is observed. Attempted explanations are based on assessments whether H A and H B are or are not in highly different magnetic environments in confomers regarded as preferred. This subsumes the possibility thatXYZC-CO2H A H B Me chiral ethyl acetates differ fromXYZC-CH A H B Me ethanes because intervention by the carboxyl group insulates the prochiral centre and allows anisotropic effects to gain somewhat in importance among mechanisms that discriminate between H A and H B so long as rotamerpopulation inequalities persist. Background information on why rotamer-population inequalities will always persist and on a heuristic that attempts to generalize the effects ofXYZ inXYZC - CU AUB V is provided. Possible effects when connectivity exists between a pair amongX, Y, Z or when specific interactions occur betweenV andX, Y orZ are considered. An interpretation in terms of ‘increasing conformational mobility’ has been suggested for the observed increase in the rate of temperature-dependence of O-methylene anisochrony down a series of chiral ethyl esters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a sequel to the work published by the first and third authors[l] on stiffened laminated shells of revolution made of unimodular materials (materials having identical properties in tension and compression). A finite element analysis of laminated bimodulus composite thin shells of revolution, reinforced by laminated bimodulus composite stiffeners is reported herein. A 48 dot doubly curved quadrilateral laminated anisotropic shell of revolution finite element and it's two compatible 16 dof stiffener finite elements namely: (i) a laminated anisotropic parallel circle stiffener element (PCSE) and (ii) a laminated anisotropic meridional stiffener element (MSE) have been used iteratively. The constitutive relationship of each layer is assumed to depend on whether the fiberdirection strain is tensile or compressive. The true state of strain or stress is realized when the locations of the neutral surfaces in the shell and the stiffeners remain unaltered (to a specified accuracy) between two successive iterations. The solutions for static loading of a stiffened plate, a stiffened cylindrical shell. and a stiffened spherical shell, all made of bimodulus composite materials, have been presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A first order optical system is investigated in full generality within the context of wave optics. The problem is reduced to a study of the ray transfer matrices. The simplest such systems correspond to axially symmetric propagation. Realization of such systems by centrally located lenses separated by finite distances is studied. It is shown that, contrary to the commonly held view, the set of first order systems that can be realized using axially symmetric thin lenses exhausts the entire SL(2, R) group; at most three lenses are needed to realize any element of this group. In particular, the inverse of free propagation can be so realized. Among anisotropic systems it is again shown that every element of the lens group Sp(4, R) can be realized using a finite number of thin lenses.