170 resultados para Anderson Hamiltonian
Resumo:
Mössbauer and electrical resistivity measurements on Eu1–xSrxFeO3(0.0 < x[less-than-or-eq] 0.4) show the presence of a time-averaged electron configuration of Fe in these solids at T > TN. Variable range hopping arising from Anderson localization seems to occur at T < TN indicating that the electron hopping time in this regime is likely to be greater than 10–7 s. Mössbauer studies on Nd1–xSrxCoO3 show that in the Anderson localization regime, the hopping time is greater than 10–7 s in this system as well.
Resumo:
We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).
Resumo:
The present work explores the temperature dependent transport behavior of n-InN nanodot/p-Si(100) heterojunction diodes. InN nanodot (ND) structures were grown on a 20 nm InN buffer layer on p-Si(100) substrates. These dots were found to be single crystalline and grown along 001] direction. The junction between these two materials exhibits a strong rectifying behavior at low temperatures. The average barrier height (BH) was determined to be 0.7 eV from current-voltage-temperature, capacitance-voltage, and flat band considerations. The band offsets derived from built-in potential were found to be Delta E-C=1.8 eV and Delta E-V=1.3 eV and are in close agreement with Anderson's model. (C) 2010 American Institute of Physics. doi:10.1063/1.3517489]
Resumo:
The thermodynamics of monodisperse solutions of polymers in the neighborhood of the phase separation temperature is studied by means of Wilson’s recursion relation approach, starting from an effective ϕ4 Hamiltonian derived from a continuum model of a many‐chain system in poor solvents. Details of the chain statistics are contained in the coefficients of the field variables ϕ, so that the parameter space of the Hamiltonian includes the temperature, coupling constant, molecular weight, and excluded volume interaction. The recursion relations are solved under a series of simplifying assumptions, providing the scaling forms of the relevant parameters, which are then used to determine the scaling form of the free energy. The free energy, in turn, is used to calculate the other singular thermodynamic properties of the solution. These are characteristically power laws in the reduced temperature and molecular weight, with the temperature exponents being the same as those of the 3d Ising model. The molecular weight exponents are unique to polymer solutions, and the calculated values compare well with the available experimental data.
Resumo:
We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010
Resumo:
We present an explicit solution of the problem of two coupled spin-1/2 impurities, interacting with a band of conduction electrons. We obtain an exact effective bosonized Hamiltonian, which is then treated by two different methods (low-energy theory and mean-field approach). Scale invariance is explicitly shown at the quantum critical point. The staggered susceptibility behaves like ln(T(K)/T) at low T, whereas the magnetic susceptibility and [S1.S2] are well behaved at the transition. The divergence of C(T)/T when approaching the transition point is also studied. The non-Fermi-liquid (actually marginal-Fermi-liquid) critical point is shown to arise because of the existence of anomalous correlations, which lead to degeneracies between bosonic and fermionic states of the system. The methods developed in this paper are of interest for studying more physically relevant models, for instance, for high-T(c) cuprates.
Resumo:
In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, beta(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases. (C) 2011 American Institute of Physics. doi:10.1063/1.3526748]
Resumo:
An exact numerical calculation of ensemble-averaged length-scale-dependent conductance for the one-dimensional Anderson model is shown to support an earlier conjecture for a conductance minimum. The numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics.
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
Experiments involving selective perturbation of a transition yield information about the directly connected transitions, which in turn yield information for deriving the parameters of the spin Hamiltonian of oriented molecules. Problems involved with selective perturbation are removed by the use of a two-dimensional experiment, namely, the modified Z-COSY-experiment, The use of this experiment is demonstrated for obtaining the connectivity information and for determining the parameters of the spin Hamiltonian of oriented benzene, a strongly coupled six-spin system
Resumo:
The decision to patent a technology is a difficult one to make for the top management of any organization. The expected value that the patent might deliver in the market is an important factor that impacts this judgement. Earlier researchers have suggested that patent prices are better indicators of value of a patent and that auction prices are the best way of determining value. However, the lack of public data on pricing has prevented research on understanding the dynamics of patent pricing. Our paper uses singleton patent auction price data of Ocean Tomo LLC to study the prices of patents. We describe price characteristics of these patents. The price of these patents was correlated with their age, and a significant correlation was found. A price - age matrix was developed and we describe the price characteristics of patents using four quadrants of the matrix, namely young and old patents with low and high prices. We also found that patents owned by small firms get transacted more often and inventor owned patents attracted a better price than assignee owned patents.
Resumo:
We derive and analyze the statistics of reflection coefficient of light backscattered coherently from an amplifying and disordered optical medium modeled by a spatially random refractive index having a uniform imaginary part in one dimension. We find enhancement of reflected intensity owing to a synergy between wave confinement by Anderson localization and coherent amplification by the active medium. This is not the same as that due to enhanced optical path lengths expected from photon diffusion in the random active medium. Our study is relevant to the physical realizability of a mirrorless laser by photon confinement due to Anderson localization.
Resumo:
FePS3 is a layered antiferromagnet (T N=123 K) with a marked Ising anisotropy in magnetic properties. The anisotropy arises from the combined effect of the trigonal distortion from octahedral symmetry and spin-orbit coupling on the orbitally degenerate5 T 2g ground state of the Fe2+ ion. The anisotropic paramagnetic susceptibilities are interpreted in terms of the zero field Hamiltonian, ?=?i [?(L iz 2 ?2)+|?|L i .S i ]?? ij J ij S i .S j . The crystal field trigonal distortion parameter ?, the spin-orbit coupling ? and the isotropic Heisenberg exchange,J ij, were evaluated from an analysis of the high temperature paramagnetic susceptibility data using the Correlated Effective Field (CEF) theory for many-body magnetism developed by Lines. Good agreement with experiment were obtained for ?/k=215.5 K; ?/k=166.5 K;J nn k=27.7 K; andJ nnn k=?2.3 K. Using these values of the crystal field and exchange parameters the CEF predicts aT N=122 K for FePS3, which is remarkably close to the observed value of theT N. The accuracy of the CEF approximation was also ascertained by comparing the calculated susceptibilities in the CEF with the experimental susceptibility for the isotropic Heisenberg layered antiferromagnet MnPS3, for which the high temperature series expansion susceptibility is available.
Resumo:
The aim of this paper is to develop a computationally efficient decentralized rendezvous algorithm for a group of autonomous agents. The algorithm generalizes the notion of sensor domain and decision domain of agents to enable implementation of simple computational algorithms. Specifically, the algorithm proposed in this paper uses a rectilinear decision domain (RDD) as against the circular decision domain assumed in earlier work. Because of this, the computational complexity of the algorithm reduces considerably and, when compared to the standard Ando's algorithm available in the literature, the RDD algorithm shows very significant improvement in convergence time performance. Analytical results to prove convergence and supporting simulation results are presented in the paper.
Resumo:
This paper addresses the problem of determining an optimal (shortest) path in three dimensional space for a constant speed and turn-rate constrained aerial vehicle, that would enable the vehicle to converge to a rectilinear path, starting from any arbitrary initial position and orientation. Based on 3D geometry, we propose an optimal and also a suboptimal path planning approach. Unlike the existing numerical methods which are computationally intensive, this optimal geometrical method generates an optimal solution in lesser time. The suboptimal solution approach is comparatively more efficient and gives a solution that is very close to the optimal one. Due to its simplicity and low computational requirements this approach can be implemented on an aerial vehicle with constrained turn radius to reach a straight line with a prescribed orientation as required in several applications. But, if the distance between the initial point and the straight line to be followed along the vertical axis is high, then the generated path may not be flyable for an aerial vehicle with limited range of flight path angle and we resort to a numerical method for obtaining the optimal solution. The numerical method used here for simulation is based on multiple shooting and is found to be comparatively more efficient than other methods for solving such two point boundary value problem.