206 resultados para Al-4075
Resumo:
The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)(2), with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x >= 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of similar to 27 angstrom. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of similar to 8 angstrom. For the in between compositions, 0.2 <= x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.
Resumo:
The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs). Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.
Resumo:
Anion-deficient layered perovskite oxides of the formula, ACa2Nb3-xMxO10-x (A = Rb, Cs; M = Al, Fe) for 0 < x less-than-or-equal-to 1.0, possessing tetragonal structures similar to the parent ACa2Nb3O10, have been synthesized. The interlayer A cations in these materials are readily exchanged with protons in aqueous HNO3 to give the protonated derivatives, HCa2Nb3-xMxO10-x; the latter are solid Bronsted acids intercalating a number of organic amines including aniline (pK(a) = 4.63). The distribution of acid sites in the interlayer region of HCa2Nb2MO9 inferred from n-alkylamine intercalation suggests that oxygen vacancies and Nb/M atoms are disordered in the ACa2Nb2MO9 samples prepared at 1100-1200-degrees-C. Annealing a disordered sample of CsCa2Nb2AlO9 for a long time at lower temperatures tends to order the Nb/Al atoms and oxygen vacancies to produce octahedral (NbO6/2)-tetrahedral (AlO4/2)-octahedral (NbO6/2) layer sequence reminiscent of the brownmillerite structure.
Resumo:
Anion-deficient perovskite oxides of the formula AM(1-x)Al(x)O(3-x) (A = Na or K; M = Nb or Ta) have been prepared for 0 < x less than or equal to 0.5. Diffraction experiments reveal that while the potassium compounds adopt orthorhombic/cubic perovskite structures similar to the parent KNbO3/KTaO3, the sodium compound, NaNb0.5Al0.5O2.5, possesses a brownmillerite/LaSr-CuAlO5-like superstructure. Al-27 NMR spectra show an exclusive tetrahedral oxygen coordination for AI(III) in Na-Nb0.5Al0.5O2.5 (I) and both tetrahedral and octahedral coordination for Al(III) in KNb0.5Al0.5O2.5 (II). The results suggest a long-range and short-range ordering of oxide ion vacancies in I and II respectively. Electrical conductivity measurements show a significant oxide ion conduction for KNb1-xAlxO3-x, with the conductivity increasing with x up to x = 0.5. The differences in the Arrhenius plots of the ionic conductivity of I and II have been rationalized in terms of the long-range and short-range ordering of oxide ion vacancies in the anion-deficient perovskite oxides.
Resumo:
This article deals with the effect of 0.25-1.5 wt pct mischmetal (MM) addition on the mechanical properties, microstructure, electrical conductivity, and fracture behavior of cast Al-7Si-0.3Mg (LM 25/356) alloy. Modification of eutectic silicon by MM is compared with strontium modification in terms of microstructure, mechanical properties, and fading behavior. Loss of magnesium encountered on holding the molten alloy and its resultant effect on mechanical properties of alloys modified with MM and Sr are compared with those in the unmodified alloy.
Resumo:
In this paper we report the mechanical alloying behaviour of elemental aluminium with diamond cubic elements Ge and Si. A metastable crystalline phase with rhombohedral crystal structure forms in Al-70 Ge-30 and Al-60 Ge-40 alloy compositions. The phase always coexists with elemental constituents and decomposes over a broad temperature range. No such metastable phase could be observed in the Al-Si system. We also report X-ray diffractometry and differential scanning calorimetry results suggestive of amorphization. Finally a comparison was made of the present result with that obtained in rapid solidification.
Resumo:
Ceramic matrix composites of Al2O3-SiC-(Al,Si) have been fabricated by directed melt oxidation of aluminum alloys into SiC particulate preforms. The proportions of Al2O3, alloy, and porosity in the composite can be controlled by proper selection of SLC particle size and the processing temperature. The wear resistance of composites was evaluated in pin-on-disk experiments against a hard steel substrate. Minimum wear rate comparable to conventional ceramics such as ZTA is recorded for the composition containing the highest fraction of alloy, owing to the development of a thin and adherent tribofilm with a low coefficient of friction.
Resumo:
The coexistence of quasicrystals and rational approximant structures (RAS) has been observed in melt-spun Al80Cr14Si6, Al80Mn14Si6 and Al75Mn10Cr5Si10 alloys. The presence of a b.c.c. alpha-AlMnSi phase in Al-Mn-Si and alpha-AlMnSi(Cr) phase in Al-Mn-Cr-Si has been seen. A multiple twinning around an irrational axis of the RAS has been reported in an aggregate of fine size cubic crystallites in all three alloys. Selected area diffraction patterns show that the crystalline aggregate symmetry is linked to the icosahedral point group symmetry (m35). Various ways of expressing the twin relationship in the cubic crystalline aggregates have been discussed. The thermal stability of the icosahedral phase at high temperatures reveals that the icosahedral phase in Al-Mn-Si and Al-Mn-Cr-Si alloys transforms to alpha-AlMnSi at temperatures of 690 and 670 K, respectively. In Al-Cr-Si alloy, heating to a high temperature (615 K) leads to the transformation of the icosahedral phase into a new metastable phase having an ordered cubic structure equivalent to alpha-AlMnSi. The occurrence of multiple twinning leading to icosahedral symmetry in the as-spun Al-Cr-Si alloy is presumably due to this metastable phase. Copyright (C) 1996 Acta Metallurgica Inc.
Resumo:
The microstructural changes of Al-22 wt%U and Al-46 wt%U alloys containing 3 wt% Zr were investigated after heat treatment at 620 degrees C for 1 to 45 days, Though it is reported that addition of similar to 3 wt% Zr stabilizes the (U,Zr)Al-3 phase at room temperature, the present investigation shows that the (U,Zr)Al-3 phase is not stable but slowly transforms to the U0.9Al4 phase, The high temperature creep curves generated for these ternary alloys showed a wavy pattern which also suggests that the (U,Zr)Al-3 phase is not stable.
Resumo:
Metal matrix composites (MMCs) based on a zinc-27% aluminium alloy (ZA-27) were produced using a pressure infiltration technique. Preforms of alumina fibres and aluminosilicate fibres were used for reinforcement. Uniform distribution of fibres and satisfactory interfacial bonding were achieved. UTS, specific strength, hardness and wear resistance were improved significantly by the alumina fibre reinforcement, but UTS decreased when using aluminosilicate fibres for reinforcement mainly due to unavoidable clustering of particles in the fibre preforms. Structure-property relations have been analysed in all cases.
Resumo:
A fatigue crack growth rate study has been carried out on L-72 aluminium alloy plate specimens with and without cold worked holes. The cold worked specimens showed significantly increased fatigue life compared to unworked specimens. Computer software is developed to evaluate the stress intensity factor for non-uniform stress distributions using Green's function approach. The exponents for the Paris equation in the stable crack growth region for cold worked and unworked specimens are 1.26 and 3.15 respectively. The reduction in exponent value indicates the retardation in crack growth rate. An SEM study indicates more plastic deformation at the edge of the hole for unworked samples as compared to the worked samples during the crack initiation period.
Resumo:
The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).