154 resultados para Adjacency Matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical expression for the LL(T) decomposition for the Gaussian Toeplitz matrix with elements T(ij) = [1/(2-pi)1/2-sigma] exp[-(i - j)2/2-sigma-2] is derived. An exact expression for the determinant and bounds on the eigenvalues follows. An analytical expression for the inverse T-1 is also derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A symmetrizer of a nonsymmetric matrix A is the symmetric matrix X that satisfies the equation XA = A(t)X, where t indicates the transpose. A symmetrizer is useful in converting a nonsymmetric eigenvalue problem into a symmetric one which is relatively easy to solve and finds applications in stability problems in control theory and in the study of general matrices. Three designs based on VLSI parallel processor arrays are presented to compute a symmetrizer of a lower Hessenberg matrix. Their scope is discussed. The first one is the Leiserson systolic design while the remaining two, viz., the double pipe design and the fitted diagonal design are the derived versions of the first design with improved performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, Al 2024-15vol.%Al2O3 particulate (average size, 18 mu m) composites were fabricated using the liquid metallurgy route. The wear and friction characteristics of Al alloy 2024 and Al 2024-15vol.%Al2O3p, composite in the as-extruded and peak-aged conditions were studied using a pin-on-disc machine (with a steel disc as the counterface material). The worn surfaces, subsurfaces and the debris were analysed in a scanning electron microscope.The performance of the composite in the as-extruded condition is slightly inferior to that of the unreinforced alloy. However, in the T6 condition, although the wear rates of two materials are initially comparable, the unreinforced alloy seizes while the composite does not within the tested range employed. In the as-extruded condition, the presence of Al2O3 particles is not particularly beneficial as they fracture and result in extensive localized cracking and removal of material from the surface. In the peak-aged condition, however, while the unreinforced alloy exhibits severe plastic deformation and undergoes seizure, there is no significant change in the mechanism in the case of the composite. Except in the case of the peak-aged unreinforced alloy, worn surfaces of all other materials show the presence of an iron-rich layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is argued that the nanometric dispersion of Bi in a Zn matrix is an ideal model system for heterogeneous nucleation experiments. The classical theory of heterogeneous nucleation with a hemispherical cap model is applied to analyse the nucleation data. It is shown that, unlike the results of earlier experiments, the derived site density for catalytic nucleation and contact angle are realistic and strongly suggest the validity of the classical theory. The surface energy between the 0001 plane of Zn and the <10(1)over bar 2> plane of Bi, which constitute the epitaxial nucleation interface, is estimated to be 39 mJ m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon fibres/particles can be satisfactory reinforcing material in polymer, ceramic and metal matrices. Carbon fibres/particles reinforced polymer matrix composites and ceramic matrix composites are being used extensively in critical areas of application, but carbon fibre - metal matrix composites have not reached that stage yet. This paper discusses the salient aspects of production and specific properties of carbon fibre/particle reinforced cast metal matrix composites. It is envisaged that these materials will find extensive applications where cost, weight and thermal expansion are the key factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution of particle reinforcements in cast composites is determined by the morphology of the solidification front. Interestingly, during solidification, the morphology of the interface is intrinsically affected by the presence of dispersed reinforcements. Thus the dispersoid distribution and length scale of matrix microstructure is a result of the interplay between these two. A proper combination of material and process parameters can be used to obtain composites with tailored microstructures. This requires the generation of a broad data base and optimization of the complete solidification process. The length scale of soldification microtructure has a large influence on the mechanical properties of the composites. This presentation addresses the concept of a particle distribution map which can help in predicting particle distribution under different solidification conditions Future research directions have also been indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, 6061 Al metallic matrix was reinforced by 12.2 wt% df SiC particulates using liquid metallurgy route. The composite material thus obtained was extruded and characterized in the as-solutionized and peak aged conditions in order to delineate the effect of aging associated precipitation of secondary phases on the tensile fracture behavior of the composite samples. The results' of microstructural characterization studies carried out using scanning electron microscope revealed the increased presence of precipitated secondary phases in the metallic matrix and a more pronounced interfacial segregation of alloying elements in case of peak aged samples when compared to the as-solutionized samples. The results of the fractographic studies conducted on the as-solutionized samples revealed that the failure was dominated by the SiC particulates cracking while for the peak aged samples the fracture surface revealed a comparatively more pronounced SiC/6061 Al debonding and reduced SiC particulates cracking. This change in the failure behavior was rationalized in terms of embrittlement of the interfacial region brought about by the aging heat treatment and is correlated, in addition, with the mechanical properties of the composite samples in as-solutionized and peak aged conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized specimens of nanometric lead dispersion in a glassy Al-Cu-V matrix by rapid solidification of the corresponding melt. The microstructure has been designed to avoid superconducting percolation due to coupling of the neighboring particles by the proximity effect. Using these specimens, we have determined quantitatively the effect of size of the ultrafine lead particles on the superconducting transition. (C) 1999 American Institute of Physics. [S0003-6951(99)02037-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation of an amorphous phase in nanosized Pi particles embedded in an Al-based glassy alloy matrix. High-resolution electron microscopy (HREM) has been used to show that the particles contain crystalline and amorphous portions. A depression of the melting point by more than 100 K of the crystalline portion of the Pi particles was found by differential scanning calorimetric studies and by in-situ electron microscopy using a heating stage. The same techniques established the absence of an amorphous phase in the particles when the matrix is crystallized. It is shown that the formation of the amorphous phase and the depression of the melting point cannot be explained by the pressure developed by the volume change during solidification in this constrained system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed Fourier line shape analysis has been performed on three different compositions of the composite matrix of Al-Si-Mg and SiC. The alloy composition in wt% is Al-7%Si, 0.35%Mg, 0.14%Fe and traces of copper and titanium (similar to 0.01%) with SiC varying from 0 to 30wt% in three steps i.e., 0, 10 and 30wt%. The line shift analysis has been performed by considering 111, 200, 220, 311 and 222 reflections after estimating their relative shift. Peak asymmetry analysis has been performed considering neighbouring 111 and 200 reflections and Fourier line shape analysis has been performed after considering the multiple orders 111 and 222, 200 and 400 reflections. Combining all these three analyses it has been found that the deformation stacking faults both intrinsic alpha' and extrinsic alpha " are absent in this alloy system whereas the deformation twin beta has been found to be positive and increases with the increase of SiC concentration. So, like other Al-base alloys this ternary alloy also shows high stacking fault energy, and the addition of SiC introduces deformation twin which increases with its concentration in the deformed lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out symmetrized density-matrix renormalization-group calculations to study the nature of excited states of long polyacene oligomers within a Pariser-Parr-Pople Hamiltonian. We have used the C-2 symmetry, the electron-hole symmetry, and the spin parity of the system in our calculations. We find that there is a crossover in the lowest dipole forbidden two-photon state and the lowest dipole allowed excited state with size of the oligomer. In the long system limit, the two-photon state lies below the lowest dipole allowed excited state. The triplet state lies well below the two-photon state and energetically does not correspond to its description as being made up of two triplets. These results are in agreement with the general trends in linear conjugated polymers. However, unlike in linear polyenes wherein the two-photon state is a localized excitation, we find that in polyacenes, the two-photon excitation is spread out over the system. We have doped the systems with a hole and an electron and have calculated the charge excitation gap. Using the charge gap and the optical gap, we estimate the binding energy of the 1(1)B(-) exciton to be 2.09 eV. We have also studied doubly doped polyacenes and find that the bipolaron in these systems, to be composed of two separated polarons, as indicated by the calculated charge-density profile and charge-charge correlation function. We have studied bond orders in various states in order to get an idea of the excited state geometry of the system. We find that the ground state, the triplet state, the dipole allowed state, and the polaron excitations correspond to lengthening of the rung bonds in the interior of the oligomer while the two-photon excitation corresponds to the rung bond lengths having two maxima in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ formations of Al2O3 + ZrO2 + SiCW ternary composite powders have been obtained by carbothermal reduction of a mixture of Sillimanite. Kaolin and Zircon using two different carbon sources. Products formed were mixtures of alumina and zirconia along with silicon carbide in the form of whiskers. The effects of composition of the reactants, the role of fineness of the starting precursors and the nature of the carbon Source on the final product powder obtained are presented. XRD and SEM analyses indicate complete reaction of the precursors to yield Al2O3 + ZrO2 + SiCW as product powders, with the SiC having whisker morphology. It is also seen that zirconia could be stabilised to some extent in the tetragonal form without any stabilising agent by tailoring the starting materials and their composition. (C) 2002 Published by Elsevier Science B.V.