95 resultados para ASYMPTOTIC NORMALIZATION COEFFICIENTS
Resumo:
In this report, we present a Born-ratio type of data normalization for reconstruction of initial acoustic pressure distribution in photoacoustic tomography (PAT). The normalized Born-ratio type of data is obtained as a ratio of photoacoustic pressure obtained with tissue sample in a coupling medium to the one obtained using purely coupling medium. It is shown that this type of data normalization improves the quantitation (intrinsic contrast) of the reconstructed images in comparison to the traditional techniques (unnormalized) that are currently available in PAT. Studies are carried out using various tissue samples. The robustness of the proposed method is studied at various noise levels added to the collected data. The improvement in quantitation can enable accurate estimation of pathophysiological parameter (optical absorption coefficient, a) of tissue sample under investigation leading to better sensitivity in PAT.
Resumo:
Sign changes of Fourier coefficients of various modular forms have been studied. In this paper, we analyze some sign change properties of Fourier coefficients of Hilbert modular forms, under the assumption that all the coefficients are real. The quantitative results on the number of sign changes in short intervals are also discussed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The present work is aimed at the development of an efficient mathematical model to assess the degradation in the stiffness properties of an anisotropic strip due to delamination. In particular, the motive is to capture those nonlinear effects in a strip that arise due to the geometry of the structure, in the presence of delamination. The variational asymptotic method (VAM) is used as a mathematical tool to simplify the original 3D problem to a 1D problem. Further simplification is achieved by modeling the delaminated structure by a sublaminate approach. By VAM, a 2D nonlinear sectional analysis is carried out to determine compact expression for the stiffness terms. The stiffness terms, both linear and nonlinear, are derived as functions of delamination length and location in closed form. In general, the results from the analysis include fully coupled nonlinear 1D stiffness coefficients, 3D strain field, 3D stress field, and in-plane and warping fields. In this work, the utility of the model is demonstrated for a static case, and its capability to capture the trapeze effect in the presence of delamination is investigated and compared with results available in the literature.
Resumo:
Asymptotically-accurate dimensional reduction from three to two dimensions and recovery of 3-D displacement field of non-prestretched dielectric hyperelastic membranes are carried out using the Variational Asymptotic Method (VAM) with moderate strains and very small ratio of the membrane thickness to its shortest wavelength of the deformation along the plate reference surface chosen as the small parameters for asymptotic expansion. Present work incorporates large deformations (displacements and rotations), material nonlinearity (hyperelasticity), and electrical effects. It begins with 3-D nonlinear electroelastic energy and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a 2-D nonlinear plate analysis. Major contribution of this paper is a comprehensive nonlinear through-the-thickness analysis which provides a 2-D energy asymptotically equivalent of the 3-D energy, a 2-D constitutive relation between the 2-D generalized strain and stress tensors for the plate analysis and a set of recovery relations to express the 3-D displacement field. Analytical expressions are derived for warping functions and stiffness coefficients. This is the first attempt to integrate an analytical work on asymptotically-accurate nonlinear electro-elastic constitutive relation for compressible dielectric hyperelastic model with a generalized finite element analysis of plates to provide 3-D displacement fields using VAM. A unified software package `VAMNLM' (Variational Asymptotic Method applied to Non-Linear Material models) was developed to carry out 1-D non-linear analysis (analytical), 2-D non-linear finite element analysis and 3-D recovery analysis. The applicability of the current theory is demonstrated through an actuation test case, for which distribution of 3-D displacements are provided. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Major drawback of studying diffusion in multi-component systems is the lack of suitable techniques to estimate the diffusion parameters. In this study, a generalized treatment to determine the intrinsic diffusion coefficients in multi-component systems is developed utilizing the concept of a pseudo-binary approach. This is explained with the help of experimentally developed diffusion profiles in the Cu(Sn, Ga) and Cu(Sn, Si) solid solutions. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
An asymptotically-exact methodology is presented for obtaining the cross-sectional stiffness matrix of a pre-twisted moderately-thick beam having rectangular cross sections and made of transversely isotropic materials. The anisotropic beam is modeled from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy of the beam is computed making use of the constitutive law and the kinematical relations derived with the inclusion of geometrical nonlinearities and initial twist. Large displacements and rotations are allowed, but small strain is assumed. The Variational Asymptotic Method is used to minimize the energy functional, thereby reducing the cross section to a point on the reference line with appropriate properties, yielding a 1-D constitutive law. In this method as applied herein, the 2-D cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged as orders of the small parameters. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that renders the 1-D strain measures well-defined. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.
Resumo:
This work presents the development of piezocomposites made up of Macro Fiber Composites (MFCs) for aerospace applications and specifically involves, their computational analysis, material characterization and certain parametric studies. MFC was developed by NASA Langley Research Center in 1996 and currently is being distributed by Smart Material Co. 1] worldwide and finds applications both as an actuator as well as for sensor in various engineering applications. In this work, MFC is being modeled as an actuator and a theoretical formulation based on Variational Asymptotic Method (VAM) 2] is presented to analyse the laminates made up of MFCs. VAM minimizes the total electro-mechanical energy for the MFC laminate and approaches the exact solution asymptotically by making use of certain small parameters inherent to the problem through dimensional reduction. VAM provides closed form solutions for 1D constitutive law, recovery relations of warpings, 3D stress/strain fields and displacements and hence an ideal tool for carrying out parametric and design studies in such applications. VAM is geometrically exact and offers rigorous material characterization through cross-sectional analysis and dimensional reduction.
Resumo:
The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam reference curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.
Resumo:
This work aims at asymptotically accurate dimensional reduction of non-linear multi-functional film-fabric laminates having specific application in design of envelopes for High Altitude Airships (HAA). The film-fabric laminate for airship envelope consists of a woven fabric core coated with thin films on each face. These films provide UV protection and Helium leakage prevention, while the core provides required structural strength. This problem is both geometrically and materially non-linear. To incorporate the geometric non-linearity, generalized warping functions are used and finite deformations are allowed. The material non-linearity is handled by using hyper-elastic material models for each layer. The development begins with three-dimensional (3-D) nonlinear elasticity and mathematically splits the analysis into a one-dimensional through-the-thickness analysis and a two-dimensional (2-D) plate analysis. The through-the-thickness analysis provides the 2-D constitutive law which is then given as an input to the 2-D reference surface analysis. The dimensional reduction is carried out using Variational Asymptotic Method (VAM) for moderate strains and very small thickness-to-wavelength ratio. It features the identification and utilization of additional small parameters such as ratio of thicknesses and stiffness coefficients of core and films. Closed form analytical expressions for warping functions and 2-D constitutive law of the film-fabric laminate are obtained.
Resumo:
The role of the molar volume on the estimated diffusion parameters has been speculated for decades. The Matano-Boltzmann method was the first to be developed for the estimation of the variation of the interdiffusion coefficients with composition. However, this could be used only when the molar volume varies ideally or remains constant. Although there are no such systems, this method is still being used to consider the ideal variation. More efficient methods were developed by Sauer-Freise, Den Broeder, and Wagner to tackle this problem. However, there is a lack of research indicating the most efficient method. We have shown that Wagner's method is the most suitable one when the molar volume deviates from the ideal value. Similarly, there are two methods for the estimation of the ratio of intrinsic diffusion coefficients at the Kirkendall marker plane proposed by Heumann and van Loo. The Heumann method, like the Matano-Boltzmann method, is suitable to use only when the molar volume varies more or less ideally or remains constant. In most of the real systems, where molar volume deviates from the ideality, it is safe to use the van Loo method. We have shown that the Heumann method introduces large errors even for a very small deviation of the molar volume from the ideal value. On the other hand, the van Loo method is relatively less sensitive to it. Overall, the estimation of the intrinsic diffusion coefficient is more sensitive than the interdiffusion coefficient.
Resumo:
The optimal power-delay tradeoff is studied for a time-slotted independently and identically distributed fading point-to-point link, with perfect channel state information at both transmitter and receiver, and with random packet arrivals to the transmitter queue. It is assumed that the transmitter can control the number of packets served by controlling the transmit power in the slot. The optimal tradeoff between average power and average delay is analyzed for stationary and monotone transmitter policies. For such policies, an asymptotic lower bound on the minimum average delay of the packets is obtained, when average transmitter power approaches the minimum average power required for transmitter queue stability. The asymptotic lower bound on the minimum average delay is obtained from geometric upper bounds on the stationary distribution of the queue length. This approach, which uses geometric upper bounds, also leads to an intuitive explanation of the asymptotic behavior of average delay. The asymptotic lower bounds, along with previously known asymptotic upper bounds, are used to identify three new cases where the order of the asymptotic behavior differs from that obtained from a previously considered approximate model, in which the transmit power is a strictly convex function of real valued service batch size for every fade state.
Resumo:
The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in 7] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.
Resumo:
Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Nanoparticle deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, the effect of various pore-scale parameters on nanoparticle deposition can be understood by studying nanoparticle transport at pore scale and upscaling the results to the Darcy scale. In this work, correlation equations for the deposition rate coefficients of nanoparticles in a cylindrical pore are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Based on dominant processes, the pore space is divided into three different regions, namely, bulk, diffusion, and potential regions. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile. Among other effects, we account for nanoparticle-collector interaction forces on nanoparticle deposition. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1-D concentration field. The latter is fitted to the 1-D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. In this study, pore-scale simulations are performed for three values of Peclet number, Pe = 0.05, 5, and 50. We find that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Peclet numbers (Pe = 0.05) and by a kinetic model at high Peclet numbers (Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1-D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relation with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with the colloid filtration theory. These equations can be incorporated into pore network models to study the effect of pore-scale parameters on nanoparticle deposition at larger length scales such as Darcy scale.
Resumo:
We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.