159 resultados para ANODIC-STRIPPING VOLTAMMETRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methanol-tolerant Pt-Pd alloy catalysts supported on to carbon with varying Pt:Pd atomic ratios of 1:1, 2:1 and 3:1 are prepared by a novel wet-chemical method and characterized using powder XRD, XPS, FESEM, EDAX and TEM techniques. The optimum atomic weight ratio for Pt to Pd in the carbon-supported alloy catalyst as established by linear-sweep voltammetry (LSV) and cell polarization studies is found to be 2:1. A direct methanol fuel cell (DMFC) employing carbon-supported Pt-Pd (2:1) alloy (Pt-Pd/C) catalyst as the cathode catalyst delivers a peak-power density of 115 mW/cm(2) at 70 degrees C as compared to peak-power density of 60 mW/cm(2) obtained with the DMFC employing carbon-supported Pt (Pt/C) catalyst operating under similar conditions. In the literature, DMFCs operating with Pt-TiO2 (2:1)/C and Pt-Au (2:1)/C methanol-tolerant cathodes are reported to exhibit maximum ORR activity among the group of these methanol-tolerant cathodes with varying catalysts compositions. Accordingly, the present study also provides an effective route to design methanol-tolerant-oxygen-reduction catalysts for DMFCs. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3596542] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Redox reactions which occur at positive potentials such as ferrous/ferric, hydroquinone/quinone, ferrocyanide/ferricyanide etc. in aqueous acidic electrolytes cannot be studied on non-platinum metals, for example, a Ni electrode. On the contrary, these reactions occur on polyaniline (PANI) modified Ni electrodes, as evidenced from cyclic voltammetry, amperometry and steady-state polarization experiments. Under identical experimental conditions of scan rate (v) and concentration (C), the peak current density (i(p)) values of Fe2+/Fe3+ redox reaction are greater on the PANI modified Ni than on Pt. Additionally, the peak potential separation (DeltaE(p)) of the voltammogram is lesser on the PANI modified Ni. With an increase in thickness of the PANI, DeltaE(p) increases suggesting that the redox reactions tend to depart from the reversibility. Scanning electron micrographs reveal the presence of a crystalline deposit of PANI on Ni when the thickness of PANI is about 0.08 mum. However, the PANI becomes amorphous and porous at higher thickness values. Raman spectroscopy and X-ray diffraction studies corroborate the observations made out of scanning electron microscopy. Higher catalytic activity of PANI is attributed to crystalline nature of PANI on Ni. Exchange current density and standard rate constant of Fe2+/Fe(3+)redox reaction are evaluated. (C) 2002 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and chemical environment of Cu in Cu/CeO2 catalysts synthesized by the solution combustion method have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and extended X-ray fine structure (EXAFS) spectroscopy. High-resolution XRD studies of 3 and 5 atom % Cu/CeO2 do not show CuO lines in their respective patterns. The structure could be refined for the composition Ce1-xCuxO2-delta (x = 0.03 and 0.05; delta similar to 0.13 and 0.16) in the fluorite structure with 5-8% oxide ion vacancy. High-resolution TEM did not show CuO particles in 5 atom % Cu/CeO2. EPR as well as XPS studies confirm the presence of Cu2+ species in the CeO2 matrix. Redox potentials of Cu species in the CeO2 matrix are lower than those in CuO. EXAFS investigations of these catalysts show an average coordination number of 3 around the Cu2+ ion in the first shell at a distance of 1.96 Angstrom, indicating the O2- ion vacancy around the Cu2+ ion. The Cu-O bond length also decreases compared to that in CuO. The second and third shell around the Cu2+ ion in the catalysts are attributed to -Cu2+-O2--Cu2+ - at 2.92 Angstrom and -Cu2+-O2--Ce4+- at the distance of 3.15 Angstrom, respectively. The present results provide direct evidence for the formation of a Ce1-xCuxO2-delta type of solid solution phase having -square-Cu2+-O-Ce4+- kind of linkages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel substituted lithium-cobalt oxides, LiCo1-xNixO2 (0 < x < 0.4), have been synthesized in a very short time by a solution combustion method at 350 degreesC using diformyl hydrazine as a fuel. Pure phases with hexagonal lattice structure have been obtained. These compounds facilitate reversible insertion/extraction of Li+ ions with good discharge capacity between 3.0 and 4.4 V versus Li/Li+. Results of the studies by powder X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic charge-discharge cycling and ac impedance measurements are presented. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermodynamic properties of Li3N dissolved in the molten LiCl salt at 900 K were explored using electrochemical methods. It was difficult to determine precisely the decomposition voltage of Li3N dissolved in the molten salt by cyclic voltammetry. The oxidation wave of N3– ion could not be located with high accuracy. However, the lithium activity of the Pb-Li alloy in equilibrium with the molten salt containing dissolved Li3N under nitrogen atmosphere could be measured electrochemically with high accuracy using the Li/Li + reference electrode. Under the conditions used in this study, the potential of the Li-Pb electrode is equal to the decomposition voltage of Li3N. The activity of Li3N in molten LiCl was determined for anionic fractions of N3– ranging from xN3– = 10–4 to 0.028. The nitride ion concentration in the salt was determined by chemical titration. The activity coefficient of the Li3N at high dilution was found to be very low, around 10–4. The activity coefficient increases sharply with composition and has a value of 0.25 at xN3– = 0.028. ©2001 The Electrochemical Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Noble metal such as Ag normally exists in an fcc crystal structure. However as the size of the material is decreased to nanometer lengthscales, a structural transformation from that of its bulk state can be expected with new atomic arrangements due to competition between internal packing and minimization of surface energy. In many previous studies, it has been shown that silver nanowires (AGNWs) grown inside anodic alumina (AAO) templates by ac or dc electrochemical deposition from silver salts or complexes, adopt fcc structure and below some critical diameter ∼ 20 nm they may acquire hcp structure at low temperature. This is, however, critically dependant on the nature of confinement, as AgNWs grown inside nanotube confinement with subnanometer diameter have been reported to have fcc structure. Hence the question of the crystal structure of metal nanowires under combined influence of confinement, temperature and deposition condition remains open. In this abstract we show that the alternative crystal structures of AGNWs at room temperature can be achieved with electrochemical growth processes under specific conditions determined by the deposition parameters and nature of confinement. We fabricated AgNWs of 4H hexagonal structure with diameters 30 – 80 nm inside polycarbonate (PC) templates with a modified dc electrodeposition technique, where the nanowires were grown at deposition potentials as low as 10 mV in 2 M silver nitrate solution[1]. We call this low-potential electrodeposition (LPED) since the electrodeposition process occurs at potential much less than the standard Nernst potential (770 mV) of silver. Two types of electrodes were used – stainless steel and sputtered thin Pt film, neither of which had any influence on the crystal structure of the nanowires. EDS elemental analysis showed the nanowires to consist only of silver. Although the precise atomic dynamics during the LPED process is unclear at present, we investigated this with HRTEM (high-resolution transmission electron microscopy) characterization of nanowires grown over various deposition times, as well as electrical conductivity measurements. These experiments indicate that nanowire growth does not occur through a three-dimensional diffusion controlled process, as proposed for conventional over-potential deposition, but follow a novel instantaneous linear growth mechanism. Further experiments showed that, (a) conventional electrochemical growth at a small over-potential in a 2 mM AgNO3 solution yields nanowires with expected fcc structure inside the same PC templates, and (2) no nanowire was observed under the LPED conditions inside hard AAO templates, indicating that LPED-growth process, and hcp structure of the corresponding nanowires depend on deposition parameters, as well as nature of confinement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an electrochemical technique for the polymerization and copolymerization of thiophene derivatives like 7,9-dithiophene-2yl-8H-cyclopenta[a]acenaphthalene-8-one and 3-hexylthiophene. The structural characterization of chemically synthesized monomers and electro-chemically synthesized polymers was carried out by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Thermal characterizations indicate that copolymer has increased thermal stability than that of homopolymer. Morphological studies of the polymerized films carried out by scanning electron microscopy shows network structure of copolymer. Optical properties of the homopolymers and copolymer were studied by UV-visible spectrometer and it was observed that band gap of copolymer is less than the homopolymers. HOMO and LUMO levels, band gap values of the respective polymers were also calculated from the cyclic voltammetry technique with various scan rates. By the peak current obtained from various scan rates shows that all polymerization reactions are diffusion controlled process. Charge transfer resistances of polymers were determined using Nyquist plots. Conductivity of synthesized polymers shows higher conductivity for copolymer than homopolymers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of oxygen from rare-earth metals (RE, RE=Gd, Tb, Dy, Er) by an electrochemical deoxidation method was investigated. A titanium basket containing the rare-earth metal sample, submerged in molten CaCl2 electrolyte, formed the cathode of an electrolysis cell. A high-purity graphite anode was used. The calcium metal produced at the cathode effectively deoxidized the rare-earth metal. Carbon monoxide and dioxide were generated at the graphite anode. Rare-earth metals containing more than 2000 mass ppm oxygen were deoxidized to 10–50 mass ppm level by electrolysis at 1189 K for 36 ks (10 h). Cyclic voltammetry was used to characterize the molten salt at different stages of the process. The effectiveness of the process is discussed with the aid of a chemical potential diagram for RE–O solid solutions. The new electrochemical technique is compared with the conventional deoxidation methods reported in the literature. The possibility of nitrogen removal from the rare-earth metals by the electrochemical method is outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size < 5 μm are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/ dopant b-naphthalene sulfonic acid (b-NSA). Microstructures obtained with scan range of 0??1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 105 to 8 x 10 cm-2. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of Β-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg-1 is obtained, which is greater than the values (350-400 Fg-1 highest) usually reported for this material. Electrochemical impedance spectroscopy proves the superc

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The boronic acid (pS)-1,2-NpFcB(OH)(2) (1) was obtained by treatment of the lithiated species (pS)-1,2-NpFcLi with B(O(i)Pr)(3), followed by acidic workup; subsequent dehydration gave the enantiomerically pure boroxine [(pS)-1,2-NpFcBO](3) (2) in 49% isolated yield. Multinuclear and 2D NMR spectroscopies, single-crystal X-ray diffraction, and elemental analysis served to confirm the structure of 2. In the solid-state structure, all three of the naphthyl groups point in one direction and all of the ferrocenyl moieties are placed on the opposite face of the boroxine ring, which is also the preferred conformation in solution according to a (1)H, (1)H-NOESY experiment. Cyclic voltammetry revealed three separate reversible oxidation events, which suggests significant communication between the ferrocenyl moieties. These redox processes experience a cathodic shift upon addition of 4-dimethylaminopyridine (DMAP) as a Lewis base. The six-membered ring is opened upon treatment with hot CHCl(3)/MeOH to form the methoxy species (pS)-1,2-NpFcB(OH)(OMe) (3), which can be converted back to the cycle 2 by dissolution in wet CHCl(3), followed by column chromatography on silica gel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size <5 mu m are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/dopant beta-naphthalene sulfonic acid (beta-NSA). Microstructures obtained with scan range of 0-1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 10(5) to 8 x 10 cm(-2). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of beta-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg(-1) is obtained, which is greater than the values (350-400 Fg(-1) highest) usually reported for this material. Electrochemical impedance spectroscopy proves the supercapacitance behaviour and explains the special inductive component of impedance observed in the high-frequency regime because of the globular structures of PPy deposited