136 resultados para ALUMINA CATALYST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) onto alumina has been studied as a function of pH, both individually and in the presence of each other. The adsorption density of PAA is found to decrease with an increase of pH while that of PVA shows the opposite trend. In a binary system containing PAA and PVA, the presence of PVA does not affect the adsorption of PAA onto alumina, but the addition of PAA diminishes the adsorption of PVA in the pH range investigated. The adsorption isotherm of PAA at acidic pH exhibits high-affinity Langmuirian behavior. The isotherms for PVA appear rounded and are of the low-affinity type, Once again the adsorption isotherms of PAA remain unaltered in the presence of PVA whereas those of PVA are significantly affected resulting in a lowering of the adsorption density consequent to PAA addition. A variation in the sequence of addition of PAA and PVA does not affect the adsorption behavior of either of the polymers, The electrokinetic behavior of alumina with PAA is hardly influenced by the addition of PVA, On the other hand, the electrophoretic mobility of alumina in the presence of PVA is significantly altered in the presence of PAA and closely resembles the trend observed with PAA alone. Desorption studies reveal that over 80% of PVA could be desorbed in the pH range 3-9 whereas in the case of PAA, the percent desorption increases from 20 to about 70% as the pH is increased from about 3 to 8. Solution conductivity tests confirm interaction of aluminum species and PAA in the bulk solution. FTIR spectroscopic data provide evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-alumina system and hydrogen bonding with respect to the PVA-alumina interaction. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodising aluminium in an acid electrolyte results in a porous alumina film. The pores are uniformly distributed and their structure can be controlled by varying the anodising parameters. In this study, the pore structure of the anodic alumina films is varied systematically by varying the anodising time and a subsequent pore widening chemical etch. The indentation behaviour of the resulting film is studied using a depth sensing nanoindenter. The hardness of the films was found to be decreasing with decreasing solid area fraction. Understanding the deformation behaviour of nanoporous alumina would help tailoring the mechanical properties by tuning the geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceria-supported Au catalyst has been synthesized by the solution combustion method for the first time and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Au is dispersed as Au as well as Au3+ states on CeO2 surface of 20-30 nm crystallites. On heating the as-prepared 1% Au/CeO2 in air, the concentration of Au3- ions on CeO2 increases at the expense of Au. Catalytic activities for CO and hydrocarbon oxidation and NO reduction over the as-prepared and the heat-treated 1% Au/CeO2 have been carried out using a temperature-programmed reaction technique in a packed bed tubular reactor. The results are compared with nano-sized Au metal particles dispersed on alpha-Al2O3 substrate prepared by the same method. All the reactions over heat-treated Au/CeO2 occur at lower temperature in comparison with the as-prepared Au/CeO2 and Au/Al2O3. The rate of NO + CO reaction over as-prepared and heat-treated 1% Au/CeO2 are 28.3 and 54.0 mumol g(-1) s(-1) at 250 and 300 degreesC respeceively. Activation energy (E,) values are 106 and 90 kJ mol(-1) for CO + O-2 reaction respectively over as-prepared and heat-treated 1% Au/CeO2 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of 0.5 mm, thick epoxy alumina nanocomposites with different filler concentrations of 0.1, 1 and 5wt%. The experiments were performed as per the ASTM D 149 standard. It was observed that the ac breakdown strength was marginally lower up to 1wt% filler concentration and then increased at 5wt% filler concentration as compared to the unfilled epoxy. The Weibull shape parameter (β) increased with the addition of nanoparticles to epoxy. The dependence of thickness on the ac breakdown strength was also analyzed by conducting experiments on 1mm and 3mm thick unfilled epoxy and epoxy alumina nanocomposites of 1wt% and 5wt% filler concentrations. The DSC analysis was done to understand the material properties at the filler resin interface in order to study the effect of the filler concentration and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective separation of haematite from alumina and silica/calcite was achieved through microbiologically induced flotation and flocculation in presence of Bacillus subtilis. Bacterial metabolites containing extracellular proteins were characterized from mineral-grown bacterial cell free extract. Bacteria can adhere to mineral surfaces and influence subsequent flotation of the minerals. Cells and metabolic products of bacteria were used in flotation, flocculation and adsorption studies on oxide minerals. Bacteria functions as a stronger depressant for haematite. Selective affinity of the bacterial cells towards the mineral surface was observed through adsorption studies. Bacterial byproduct like extracellular protein (EP) was isolated from bacteria. The protein profile of the EP of bacterial cells grown in presence and absence of minerals (haematite, corundum, quartz and calcite) was also studied. The role of such proteins in selective mineral separation was demonstrated through microbially induced selective flotation. This study has demonstrated the utility and amenability of microbially induced mineral beneficiation through the use of bacterially generated metabolic products and mineral-grown bacterial cells. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pd/CeO2 (1 at. %) prepared by the solution-combustion method shows a higher catalytic activity for CO oxidation and NO reduction than Pd metal, PdO, and Pd dispersed over CeO2 by the conventional method. To understand the higher catalytic properties, the structure of 1 at. % Pd/CeO2 catalyst material has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The diffraction lines corresponding to Pd or PdO are not observed in the high-resolution XRD pattern of 1 at. % Pd/CeO2. The structure of 1 at. % Pd/CeO2 could be refined for the composition of Ce0.99Pd0.01O1.90 in the fluorite structure with 5% oxide ion vacancy. Pd(3d) peaks in the XPS in I at. % Pd/CeO2 are shifted by 3 eV indicating that Pd is in a highly ionic +2 state. EXAFS studies show the average coordination number of 3 around Pd2+ ion in the first shell of 1 at. % Pd/CeO2 at a distance of 2.02 Angstrom, instead of 4 as in PdO. The second shell at 2.72 Angstrom is due to Pd-Pd correlation which is larger than 2.69 Angstrom in PdO. The third shell at 3.31 Angstrom having 7 coordination is absent either in Pd metal or PdO, which can be attributed to -Pd2+-Ce4+- correlation. Thus, 1 at. % Pd/CeO2 forms the Ce1-xPdxO2-delta type of solid solution having -Pd2+-O-2-Ce4+- kinds of linkages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ytterbium triflate catalyses the deprotection of tert-butyl esters selectively in the presence of other esters under mild conditions in almost quantitative yields. The reactions are carried out in nitromethane (45degrees - 50degreesC) using 5 mole percent of the catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of thermal degradation of poly(vinyl chloride) (PVC) in solution was investigated at various temperatures (210-250degreesC). The degradation rate coefficients were determined from the time evolution of the molecular weight distribution (MWD). The energy of activation, determined from the temperature dependence of the rate coefficient, was 26.6 kcal/mol. The degradation of PVC was also studied in the presence of a catalyst (HZSM-5 zeolite). The results indicated that increase of the degradation rate of PVC is first order with the HZSM-5 concentration up to 50 g/L and zero order at higher concentrations. The thermal degradation kinetics of PVC in the presence of 50 g/L of the catalyst was studied at various temperatures. The temperature dependency of the rate coefficient was used to calculate the activation energy (21.5 kcal/mol). This is consistent with the observation that the presence of a catalyst generally decreases the activation energy and promotes degradation. (C) 2002 John Wiley Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pd-coated Ni nanoparticles of 50 +/- 15 nm size are prepared by the polyol method and characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry analysis. Surface coverage of Pd on Ni particles is less than a monolayer for 0.5 and 1 at% Pd-coated Ni. Quantitative conversion of nitrobenzene to aniline is observed over these Pd-coated Ni particles at 27degreesC under one atmospheric pressure of hydrogen. 0.5 and 1 at% Pd-coated Ni exhibits 10 times greater activity than that of typical colloidal palladium and platinum catalysts and 2.5 times higher activity than commercial 5 wt% Pd/C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During stainless steelmaking, reductions of oxides, dissolution of oxides in the slag, and foam formation take place simultaneously. Each of these phenomena independently has been studied by a number of investigators, but little information is available for these phenomena acting simultaneously. Experiments have been conducted to study the simultaneous reduction of oxides of chromium, vanadium, and iron from stainless steelmaking slag by carbon along with the dissolution of alumina in the slag. The overall phenomena and the effect on the chromium oxide reduction have been studied..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion synthesized Ag/CeO2 catalysts have been characterized by Extended Xray Absorption Fine Structure (EXAFS) spectroscopy at the Ag K-edge. It has been found that Ag+ like species is present in 1% Ag/CeO2 catalyst, whereas mostly Ag metal clusters are found in 3% Ag/CeO2. The analysis of EXAFS spectra indicates that about one oxygen atom is coordinated to Ag central atom at a distance of 2.19 Angstrom in 1% Ag/CeO2 catalyst along with eight coordinated Ag-Ag bond at 2.86 Angstrom. The Ag-O bond is absent in 3% Ag/CeO2. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous aluminosilicate gel powders have been subjected to carbothermal reduction and nitridation reaction at high temperature (1673 K). The influence of Al2O3 content in the gel powder on the nature and structure of the product phases has been examined. Between 5% and 9% Al2O3 in the gel powder, it is found that only β-SiAION is formed as the product of CTR/N reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constant stress compression creep experiments were carried out on high purity alumina composites with spinel contents of 8 and 30%, corresponding to a situation with isolated and interconnected second phases. The creep experiments were conducted over a stress and temperature range of 10 to 150 MPa and 1623 to 1723 K, respectively. Analysis of the experimental data indicated that the variation in spinel content did not have any influence on high temperature deformation in the composite. The spinel phase retards grain growth, and this may enhance superplasticity in alumina-spinel composites.