151 resultados para 54301-002
Resumo:
The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.
Resumo:
A current injection pattern in Electrical Impedance Tomography (EIT) has its own current distribution profile within the domain under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability. Image reconstruction studies with practical phantoms are essential to assess the performance of EIT systems for their validation, calibration and comparison purposes. Impedance imaging of real tissue phantoms with different current injection methods is also essential for better assessment of the biomedical EIT systems. Chicken tissue paste phantoms and chicken tissue block phantoms are developed and the resistivity image reconstruction is studied with different current injection methods. A 16-electrode array is placed inside the phantom tank and the tank is filled with chicken muscle tissue paste or chicken tissue blocks as the background mediums. Chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. A low magnitude low frequency constant sinusoidal current is injected at the phantom boundary with opposite and neighboring current patterns and the boundary potentials are measured. Resistivity images are reconstructed from the boundary data using EIDORS and the reconstructed images are analyzed with the contrast parameters calculated from their elemental resistivity profiles. Results show that the resistivity profiles of all the phantom domains are successfully reconstructed with a proper background resistivity and high inhomogeneity resistivity for both the current injection methods. Reconstructed images show that, for all the chicken tissue phantoms, the inhomogeneities are suitably reconstructed with both the current injection protocols though the chicken tissue block phantom and opposite method are found more suitable. It is observed that the boundary potentials of the chicken tissue block phantoms are higher than the chicken tissue paste phantom. SNR of the chicken tissue block phantoms are found comparatively more and hence the chicken tissue block phantom is found more suitable for its lower noise performance. The background noise is found less in opposite method for all the phantom configurations which yields the better resistivity images with high PCR and COC and proper IRMean and IRMax neighboring method showed higher noise level for both the chicken tissue paste phantoms and chicken tissue block phantoms with all the inhomogeneities. Opposite method is found more suitable for both the chicken tissue phantoms, and also, chicken tissue block phantoms are found more suitable compared to the chicken tissue paste phantom. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present study dye sensitized solar cells (DSSCs) have been fabricated with a tri-layer photo anode consisting of hydrothermally prepared titania nano tubes (TNT) having a diameter of 9-10 nm and length of several micrometers as outer layer, P25 TiO2 powder as transparent light absorbing middle layer and a compact TiO2 inner layer to improve the adhesion of different layers on a transparent conducting oxide coated substrate. In comparison to cells fabricated using TNTs or P25 alone, the tri-layer DSSCs exhibit an enhanced efficiency of 7.15% with a current density of 17.12 mA cm(-2) under AM 1.5 illumination. The enhancement is attributed to the light scattering generated by TNTs aggregates, reduction in electron transport resistance at the TiO2/dye/electrolyte interface and an improvement in electron life-time. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The diamond films were deposited onto a wurtzite gallium nitride (GaN) thin film substrate using hot-filament chemical vapor deposition (HFCVD). During the film deposition a lateral temperature gradient was imposed across the substrate by inclining the substrate. As grown films predominantly showed the hexagonal phase, when no inclination was applied to the substrate. Tilting the substrate with respect to the heating filament by 6 degrees imposed a lateral temperature gradient across the substrate, which induced the formation of a cubic diamond phase. Diamond grains were predominantly oriented in the (100) direction. However, a further increase in the substrate tilt angle to 12 degrees, resulted in grains oriented in the (111) direction. The growth rate and hence the morphology of diamond grains varied along the inclined substrate. The present study focuses on the measurements of dominant phase formation and crystal orientation with varying substrate inclination using orientation-imaging microscopy (OIM). This technique enables direct examination of individual diamond grains and their crystallographic orientation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Calcium-dependent protein kinases (CPKs) constitute a unique family of kinases involved in many physiological responses in plants. Biochemical and kinetic properties of a recombinant Swainsona canescens calcium-dependent protein kinase (ScCPK1) were examined in this study. The optimum pH and temperature for activity were pH 7.5 and 37 degrees C, respectively. Substrate phosphorylation activity of ScCPK1 was calmodulin (CaM) independent. Yet CaM antagonists, W7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazolium inhibited the activity with IC50 values of 750 nM and 350 pM, respectively. Both serine and threonine residues were found to be phosphorylated in auto-phosphorylated ScCPK1 and in histone III-S phosphorylated by ScCPK1. The Ca2+] for half maximal activity (K-0.5) was found to be 0.4 mu M for ScCPK1 with histone III-S as substrate. Kinetic analysis showed that Km of ScCPK1 for histone III-S was 4.8 mu M. These data suggest that ScCPK1 is a functional Ser/Thr kinase, regulated by calcium, and may have a role in Ca2+-mediated signaling in S. canescens. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
There is a research knowledge gap for the dry wear data of nitride treated Stainless Steel in high temperature and high vacuum environment. In order to fill this gap, plasma nitriding was done on austenitic Stainless Steel type AISI 316LN (316LN SS) and dry sliding wear tests have been conducted at 25 degrees C, 200 degrees C and 400 degrees C in high vacuum of 1.6 x 10(-4) bar. The two different slider material (316LN SS and Colmonoy) and two different sliding speeds (0.0576 m/s and 0.167 m/s) have been used. The tribological parameters such as friction coefficient, wear mechanism and volume of metal loss have been evaluated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of the worn pins and rings. Electronic balancing machine was used to record the mass of metal loss during wear tests. The 2D optical profilometer was used to measure the depth of the wear track. The Plasma Nitride treated 316LN SS rings (PN rings) exhibit excellent wear resistance against 316LN SS pin and Colmonoy pin at all temperatures. However, PN ring vs. Colmonoy pin Pair shows better wear resistance than PN ring vs. 316LN SS pin Pair at higher temperature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Unending quest for performance improvement coupled with the advancements in integrated circuit technology have led to the development of new architectural paradigm. Speculative multithreaded architecture (SpMT) philosophy relies on aggressive speculative execution for improved performance. However, aggressive speculative execution comes with a mixed flavor of improving performance, when successful, and adversely affecting the energy consumption (and performance) because of useless computation in the event of mis-speculation. Dynamic instruction criticality information can be usefully applied to control and guide such an aggressive speculative execution. In this paper, we present a model of micro-execution for SpMT architecture that we have developed to determine the dynamic instruction criticality. We have also developed two novel techniques utilizing the criticality information namely delaying the non-critical loads and the criticality based thread-prediction for reducing useless computations and energy consumption. Experimental results showing break-up of critical instructions and effectiveness of proposed techniques in reducing energy consumption are presented in the context of multiscalar processor that implements SpMT architecture. Our experiments show 17.7% and 11.6% reduction in dynamic energy for criticality based thread prediction and criticality based delayed load scheme respectively while the improvement in dynamic energy delay product is 13.9% and 5.5%, respectively. (c) 2012 Published by Elsevier B.V.
Resumo:
Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An enantiospecific total synthesis of polyhydroxy delta-pyrone natural product phomopsolide B is accomplished. The main feature of the synthesis is the installation of the required E-olefin by Horner-Emmons-Wordsworth reaction and the formation of the lactone involving Still-Gennari olefination followed by lactonization. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 +/- 0.02 dB at 1600 nm, including a propagation loss of 1.6 +/- 0.3 dB. Active characterization shows a relative gain of 2.524 +/- 0.002 dB/cm and 1.359 +/- 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm. (C) 2012 Optical Society of America
Resumo:
A series of 5-bromo-2-(3,5-diaryl-4,5-dihydro-1H-Pyrazol-1-yl)pyrimidine were prepared under conventional heating as well as microwave reaction condition. The newly synthesized compounds were characterized on the basis of elemental, spectral and single crystal X-ray studies. These new compounds were screened for their antioxidant, anti-inflammatory and analgesic activities. Some of these compounds exhibited potent biological activities compared to the standard drug. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The crystal structures of two polymorphs and two polymorphic hemihydrates of Etoricoxib are reported. Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) that is a selective inhibitor of COX-2. It is used in the treatment of various types of inflammation, pain and fever. Clas et al. have reported four polymorphs (labeled I through IV) and two solvates (hemi-and sesquihydrate) of the API in US patent 6,441,002 (Clas et al, US patent 6,441,002, 2002). However, no crystal structures have been reported for any of these forms. A comparison was made between the PXRD patterns reported in patent `002 and the powder spectra simulated from single crystal data. The two polymorphs characterized here correspond to form I and form IV of the patent. Form II of the patent could not be obtained by us with a variety of experimental conditions. Form III of the patent corresponds to hemihydrate II of this study. Form III is therefore not a polymorph of form I and form IV. What we have termed hemihydrate I in this study is obtained under a wide variety of conditions and it is also the only hemihydrate reported as such in the patent. Because the Etoricoxib molecule contains no conventional hydrogen bond donors, there cannot be any strong hydrogen bonds in the crystal structures of forms I and IV. The packing is accordingly characterized by weak hydrogen bonds of the C-H center dot center dot center dot O=S and C-H center dot center dot center dot N type. Thermal data were collected for form I, form IV and hemihydrate I to shed some light on relative stabilities. PXRD diffractograms show the transformation of form IV to form I at elevated temperature, indicating that form I is more stable than form IV. However, this transformation occurs only in samples of form IV that contain some form I; it does not occur in pure form IV. The formation of the two hemihydrates could follow from the known tendency of an acceptor-rich molecule to crystallize as a hydrate.