121 resultados para 2ND-ORDER PERTURBATION-THEORY
Resumo:
A simple new series, using an expansion of the velocity profile in parabolic cylinder functions, has been developed to describe the nonlinear evolution of a steady, laminar, incompressible wake from a given arbitrary initial profile. The first term in this series is itself found to provide a very satisfactory prediction of the decay of the maximum velocity defect in the wake behind a flat plate or aft of the recirculation zone behind a symmetric blunt body. A detailed analysis, including higher order terms, has been made of the flat plate wake with a Blasius profile at the trailing edge. The same method yields, as a special case, complete results for the development of linearized wakes with arbitrary initial profile under the influence of arbitrary pressure gradients. Finally, for purposes of comparison, a simple approximate solution is obtained using momentum integral methods, and found to predict satisfactorily the decay of the maximum velocity defect. © 1970 Wolters-Noordhoff Publishing.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
This paper is concerned with the possibility of a direct second-order transition out of a collinear Neel phase to a paramagnetic spin liquid in two-dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second-order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an epsilon expansion. The existence of such a transition has a number of interesting implications for spin-liquid-based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin-liquid-based approach.
Resumo:
An expression is developed for the variation of the critical solution temperature of a binary liquid system when a third component (dopant) is added, using an extension of the regular solution theory. The model can be used for UCST, LCST and for closed loop systems and has the correct features in the limiting cases.
Resumo:
Numerous reports from several parts of the world have confirmed that on calm clear nights a minimum in air temperature can occur just above ground, at heights of the order of $\frac{1}{2}$ m or less. This phenomenon, first observed by Ramdas & Atmanathan (1932), carries the associated paradox of an apparently unstable layer that sustains itself for several hours, and has not so far been satisfactorily explained. We formulate here a theory that considers energy balance between radiation, conduction and free or forced convection in humid air, with surface temperature, humidity and wind incorporated into an appropriate mathematical model as parameters. A complete numerical solution of the coupled air-soil problem is used to validate an approach that specifies the surface temperature boundary condition through a cooling rate parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the model is numerically solved for various values of turbulent friction velocity. It is shown that a lifted minimum is predicted by the model for values of ground emissivity not too close to unity, and for sufficiently low surface cooling rates and eddy transport. Agreement with observation for reasonable values of the parameters is demonstrated. A heuristic argument is offered to show that radiation substantially increases the critical Rayleigh number for convection, thus circumventing or weakening Rayleigh-Benard instability. The model highlights the key role played by two parameters generally ignored in explanations of the phenomenon, namely surface emissivity and soil thermal conductivity, and shows that it is unnecessary to invoke the presence of such particulate constituents as haze to produce a lifted minimum.
Resumo:
A novel approach to estimate fringe order in Moire topography is proposed. Along with the light source used to create shadow of the grating on the object (as in conventional moire), proposed method uses a second light source which illuminates the object with color bands from the side. Width of each colored band is set to match that height which leads to a 2 pi phase shift in moire fringes. This facilitates one to rule the object with colored bands, which can be used to estimate fringe order using a color camera with relatively low spatial resolution with out any compromise in height sensitivity. Current proposal facilitates one to extract 3D profile of objects with surface discontinuities. It also deals with the possible usage of moire topography (when combined with the proposed method) in extracting 3D surface profile of many objects with height discontinuities using a single 2D image. Present article deals with theory and simulations of this novel side illumination based approach.
Resumo:
We present a first-principles theory of the equilibrium b.c.c.-f.c.c. interface at coexistence using the density functional method. We assume that the interfacial region has local body-centred tetragonal (b.c.t.) symmetry and predict typical interfacial widths to be of order 2 to 3 lattice spacings with typical energies close to 0.05 J/m2. These quantities are in good agreement with laboratory measurements on coherent interfaces.
Resumo:
A mean-field description of the glass transition in the hard-sphere system is obtained by numerically locating "glassy" minima of a model free-energy functional. These minima, characterized by inhomogeneous but aperiodic density distributions, appear as the average density is increased above the value at which equilibrium crystallization takes place. Investigations of the density distribution and local bond-orientational order at these minima yield results similar to those obtained from simulations.
Resumo:
Complexity theory is an important and growing area in computer science that has caught the imagination of many researchers in mathematics, physics and biology. In order to reach out to a large section of scientists and engineers, the paper introduces elementary concepts in complexity theory in a informal manner, motivating the reader with many examples.
Resumo:
Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.
Resumo:
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.
Resumo:
A primary flexure problem defined by Kirchhoff theory of plates in bending is considered. Significance of auxiliary function introduced earlier in the in-plane displacements in resolving Poisson-Kirchhoffs boundary conditions paradox is reexamined with reference to reported sixth order shear deformation theories, in particular, Reissner's theory and Hencky's theory. Sixth order modified Kirchhoff's theory is extended here to include shear deformations in the analysis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Recently three different experimental studies on ultrafast solvation dynamics in monohydroxy straight-chain alcohols (C-1-C-4) have been carried out, with an aim to quantify the time constant (and the amplitude) of the ultrafast component. The results reported are, however, rather different from different experiments. In order to understand the reason for these differences, we have carried out a detailed theoretical study to investigate the time dependent progress of solvation of both an ionic and a dipolar solute probe in these alcohols. For methanol, the agreement between the theoretical predictions and the experimental results [Bingemann and Ernsting J. Chem. Phys. 1995, 102, 2691 and Horng et al. J: Phys, Chern, 1995, 99, 17311] is excellent. For ethanol, propanol, and butanol, we find no ultrafast component of the time constant of 70 fs or so. For these three liquids, the theoretical results are in almost complete agreement with the experimental results of Horng et al. For ethanol and propanol, the theoretical prediction for ionic solvation is not significantly different from that of dipolar solvation. Thus, the theory suggests that the experiments of Bingemann and Ernsting and those of Horng et al. studied essentially the polar solvation dynamics. The theoretical studies also suggest that the experimental investigations of Joo et al. which report a much faster and larger ultrafast component in the same series of solvents (J. Chem. Phys. 1996, 104, 6089) might have been more sensitive to the nonpolar part of solvation dynamics than the polar part. In addition, a discussion on the validity of the present theoretical approach is presented. In this theory the ultrafast component arises from almost frictionless inertial motion of the individual solvent molecules in the force field of its neighbors.
Resumo:
In recent years, parallel computers have been attracting attention for simulating artificial neural networks (ANN). This is due to the inherent parallelism in ANN. This work is aimed at studying ways of parallelizing adaptive resonance theory (ART), a popular neural network algorithm. The core computations of ART are separated and different strategies of parallelizing ART are discussed. We present mapping strategies for ART 2-A neural network onto ring and mesh architectures. The required parallel architecture is simulated using a parallel architectural simulator, PROTEUS and parallel programs are written using a superset of C for the algorithms presented. A simulation-based scalability study of the algorithm-architecture match is carried out. The various overheads are identified in order to suggest ways of improving the performance. Our main objective is to find out the performance of the ART2-A network on different parallel architectures. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.