91 resultados para 20-200
Resumo:
Objective: The present study was undertaken to evaluate the antitumor and antioxidant status of ethanol extract of Terminalia catappa leaves against Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Materials and Methods: The leaves powder was extracted with Soxhlet apparatus and subjected to hot continuous percolation using ethanol (95% v/v). Tumor bearing animals was treated with 50 and 200 mg/kg of ethanol extract. EAC induced in mice by intraperitoneal injection of EAC cells 1 x 10(6) cells/mice. The study was assed using life span of EAC-bearing hosts, hematological parameters, volume of solid tumor mass and status of antioxidant enzymes such as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities. Total phenolics and flavonoids contents from the leaves extract were also determined. Results: Total phenolics and flavonoids contents from the leaves extract were found 354.02 and 51.67 mg/g extract. Oral administration of ethanol extract of T. catappa (50 and 200 mg/kg) increased the life span (27.82% and 60.59%), increased peritoneal cell count (8.85 +/- 0.20 and 10.37 +/- 0.26) and significantly decreased solid tumor mass (1.16 +/- 0.14 cm(2)) at 200 mg/kg as compared with EAC-tumor bearing mice (P < 0.01). Hematological profile including red blood cell count, white blood cell count, hemoglobin (11.91 +/- 0.47 % g) and protein estimation were found to be nearly normal levels in extract-treated mice compared with tumor bearing control mice. Treatment with T. catappa significantly decreased levels of LPO and GSH, and increased levels of SOD and CAT activity (P < 0.01). Conclusion: T. catappa exhibited antitumor effect by modulating LPO and augmenting antioxidant defense systems in EAC bearing mice. The phenolic and flavonoid components in this extract may be responsible for antitumor activity.
Resumo:
Closed loop current sensors used in power electronics applications are expected to have high bandwidth and minimal measurement transients. In this paper, a closed loop compensated Hall-effect current sensor is modeled. The model is used to tune the sensor's compensator. Analytical expression of step response is used to evaluate the performance of the PI compensator in the current sensor. This analysis is used to devise a procedure to design parameters of the PI compensator for fast dynamic response and for small dynamic error. A prototype current sensor is built in the laboratory. Simulations using the model are compared with experimental results to validate the model and to study the variation in performance with compensator parameters. The performance of the designed PI compensator for the sensor is compared with a commercial current sensor. The measured bandwidth of the designed current sensor is above 200 kHz, which is comparable to commercial standards. Implementation issues of PI compensator using operational amplifiers are also addressed.
Resumo:
The nano ZnFe2O4 compound was prepared by eco-friendly hydrothermal method. The characterization of the sample for its structure, morphology and composition were done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, Fourier transform infrared spectroscopy, zeta surface profiler and UV-Visible spectroscopy studies. The PXRD measurement reveals that the compound shows spinel cubic phase belong Fd (3) over barm (227) space group. Morphology of the compound from SEM and surface profile shows nearly spherical agglomerated particles with well defined grains and grain boundaries. The material shows the semiconducting behavior with E-g of 2.3 eV at room temperature (RT). The variation in the magnetic ordering was observed for wide range of temperature. The compound behaves like a soft magnetic material with ferrimagnetic at various temperatures except at RT. Both magnetic and EPR studies supports the superparamagnetic behavior of the the sample. The DC conductivity, dielectric and AC conductivity behavior of the 1000 degrees C pellets sintered for 2 h shows good frequency dependent transport properties. The present study facilitate in selecting the suitable materials for the nanoelectronics and spintronic applications. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.
Resumo:
A novel peptide containing a single disulfide bond, CIWPWC (Vi804), has been isolated and characterised from the venom of the marine cone snail, Conus virgo. A precursor polypeptide sequence derived from complementary DNA, corresponding to the M-superfamily conotoxins, has been identified. The identity of the synthetic and natural peptide sequence has been established. A detailed analysis of the conformation in solution is reported for Vi804 and a synthetic analogue, (CIWPWC)-W-D ((D)W3-Vi804), in order to establish the structure of the novel WPW motif, which occurs in the context of a 20-membered macrocyclic disulfide. Vi804 exists exclusively in the cis W3P4 conformer in water and methanol, whereas (D)W3-Vi804 occurs exclusively as the trans conformer. NMR spectra revealed a W3P4 typeVI turn in Vi804 and a typeII turn in the analogue peptide, (D)W3-Vi804. The extremely high-field chemical shifts of the proline ring protons, together with specific nuclear Overhauser effects, are used to establish a conformation in which the proline ring is sandwiched between the flanking Trp residues, which emphasises a stabilising role for the aromatic-proline interactions, mediated predominantly by dispersion forces.
Resumo:
In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.
Resumo:
The evolution of crystallographic texture in a nanocrystalline nickel-20 wt% cobalt alloy has been investigated for deformation up to large strains. The effect of texture on magnetic properties has been evaluated. The material shows characteristic copper-type texture at large strain levels. Microstructural examinations indicate that the evolution of texture is assisted by deformation-induced grain growth. The values of saturation magnetization and coercivity have been correlated with the crystallographic texture and grain size. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The binding of ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) with telomeric and genomic G-quadruplex DNA has been extensively studied. However, a comparative study of interactions of TMPyP4 with different conformations of human telomeric G-quadruplex DNA, namely, parallel propeller-type (PP), antiparallel basket-type (AB), and mixed hybrid-type (MH) G-quadruplex DNA, has not been done. We considered all the possible binding sites in each of the G-quadruplex DNA structures and docked TMPyP4 to each one of them. The resultant most potent sites for binding were analyzed from the mean binding free energy of the complexes. Molecular dynamics simulations were then carried out, and analysis of the binding free energy of the TMPyP4-G-quadruplex complex showed that the binding of TMPyP4 with parallel propeller-type G-quadruplex DNA is preferred over the other two G-quadruplex DNA conformations. The results obtained from the change in solvent excluded surface area (SESA) and solvent accessible surface area (SASA) also support the more pronounced binding of the ligand with the parallel propeller-type G-quadruplex DNA.
Preferential polarization and its reversal in polycrystalline BiFeO3/La0.5Sr0.5CoO3 heterostructures
Resumo:
Polycrystalline BiFeO3 thin films were grown on La0.5Sr0.5CoO3 buffered Pt (200)/TiO2/SiO2/Si substrates under different oxygen partial pressures (10, 25, 50 and 100 mTorr) by puked laser ablation. Piezo-response Force Microscopy and Piezo-Force Spectroscopy have shown that all the films are ferroelectric in nature with locally switchable domains. It has also revealed a preferential downward domain orientation in as-grown films grown under lower oxygen partial pressure (10 and 25 mTorr) with a reversal of preferential domain orientation as the oxygen partial pressure is increased to 100 mTorr during laser ablation. Such phenomena are atypical of multi-grained polycrystalline ferroelectric films and have been discussed On the basis of detect formation with changing growth conditions. For the 50 mTorr grown film, asymmetric domain stability and retention during write-read studies has been observed which is attributed to grain-size-related defect concentration, affecting pinning centres that inhibit domain wall motion. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Nanocrystalline Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powder was synthesized via the complex oxalate precursor route at a relatively low temperature (800 degrees C/5 h). The phase formation temperature of BCZT at nanoscale was confirmed by thermogravimetric (TG), differential thermal analysis (DTA) followed by X-ray powder diffraction (XRD) studies. Fourier transform infrared (FTIR) spectroscopy was carried out to confirm the complete decomposition of oxalate precursor into BCZT phase. The XRD and profile fitting revealed the coexistence of cubic and tetragonal phases and was corroborated by Raman study. Transmission electron microscopy (TEM) carried out on 800 degrees C and 1000 degrees C/5 h heat treated BCZT powder revealed the crystallite size to be in the range of 20-50 nm and 40-200 nm respectively. The optical band gap for BCZT nanocrystalline powder was obtained using Kubelka Munk function and was found to be around 3.12 +/- 0.02 eV and 3.03 +/- 0.02 eV respectively for 800 degrees C (20-50 nm) and 1000 degrees C/5 h (40-200 nm) heat treated samples. The piezoelectric properties were studied for two different crystallite sizes (30 and 70 nm) using a piezoresponse force microscope (PFM). The d(33) coefficients obtained for 30 nm and 70 nm sized crystallites were 4 pm V-1 and 47 pm V-1 respectively. These were superior to that of BaTiO3 nanocrystal (approximate to 50 nm) and promising from a technological/industrial applications viewpoint.
Resumo:
A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate current-collectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silica-gel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of similar to 200 F and similar to 300 F, energy densities of similar to 1.9 Wh kg(-1) and similar to 2.5 Wh kg(-1) and power densities of similar to 2 kW kg(-1) and similar to 0.8 kW kg(-1), respectively, having faradaic-efficiency values of similar to 90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about similar to 4 US$/Wh as compared to similar to 20 US$/Wh for commercially available ultracapacitors.
Resumo:
Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.
Resumo:
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
Resumo:
Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.