100 resultados para 197-1204


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type I DNA topoisomerases from bacteria catalyse relaxation of negatively supercoiled DNA in a Mg2+ dependent manner. Although topoisomerases of distinct classes have been subjected for anti-cancer and anti-infective drug development, bacterial type I enzymes are way behind in this regard. Our studies with Mycobacterium smegmatis topoisomerase I (MstopoI) revealed several of its distinct properties compared to the well studied Escherichia coli topoisomerase I (EctopoI) suggesting the possibility of targeting the mycobacterial enzyme for inhibitor development. Here, we describe Mycobacterium tuberculosis topoisomerase I (MttopoI) and compare its properties with MstopoI and EctopoI. The enzyme cleaves DNA at preferred sites in a pattern similar to its ortholog from M. smegmatis. Oligonucleotides containing the specific recognition sequence inhibited the activity of the enzyme in a manner similar to that of MstopoI. Substitution of the acidic residues, D111 and E115 which are involved in Mg2+ co-ordination, to alanines affected the DNA relaxation activity. Unlike the wild type enzyme, D111A was dependent on Mg2+ for DNA cleavage and both the mutants were compromised in religation. The monoclonal antibody (mAb), 2F3G4, developed against MstopoI inhibited the relaxation activity of MttopoI. These studies affirm the characteristics of MttopoI to be similar to MstopoI and set a stage to target it for the development of specific small molecule inhibitors. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that every isometry from the unit disk Delta in , endowed with the Poincar, distance, to a strongly convex bounded domain Omega of class in , endowed with the Kobayashi distance, is the composition of a complex geodesic of Omega with either a conformal or an anti-conformal automorphism of Delta. As a corollary we obtain that every isometry for the Kobayashi distance, from a strongly convex bounded domain of class in to a strongly convex bounded domain of class in , is either holomorphic or anti-holomorphic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing commercial applications had brought aluminium oxide nanoparticles under,toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6 +/- 22 nm and ANP(2), mean hydrodynamic diameter 246.9 +/- 39 nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (<= 1 mu g/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al3+ ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) 82.6 +/- 22 nm (0 h) to 246.3 +/- 59 nm (24h), to 1204 +/- 140 nm (72 h)] and ANP(2) 246.9 +/- 39 nm (Oh) to 368.28 +/- 48 nm (24 h), to 1225.96 +/- 186 nm (72 h)] signifying decreased relative abundance of submicron sized particles (<1000 nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1 mu g/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72 h, significant Al3+ ion release in the test medium 0.092 mu g/mL for ANP(1), and 0.19 mu g/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid diffusion couple experiments are conducted to analyse the growth mechanism of the phases and the diffusion mechanism of the components in the Ti-Si system. The calculation of the parabolic growth constants and the integrated diffusion coefficients substantiates that the analysis is intrinsically prone to erroneous conclusions if it is based on just the parabolic growth constants determined for a multiphase interdiffusion zone. The location of the marker plane is detected based on the uniform grain morphology in the TiSi2 phase, which indicates that this phase grows mainly because of Si diffusion. The growth mechanism of the phases and morphological evolution in the interdiffusion zone are explained with the help of imaginary diffusion couples. The activation enthalpies for the integrated diffusion coefficient of TiSi2 and the Si tracer diffusion are calculated as 190 +/- 9 and 197 +/- 8 kJ/mol, respectively. The crystal structure, details on the nearest neighbours of the components, and their relative mobilities indicate that the vacancies are mainly present on the Si sublattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CaSiO3 nano-ceramic powder doped with Pr3+ has been prepared by solution combustion method. The powder Ca0.5Pr0.05SiO3 is investigated for its dielectric and electrical properties at room temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO3:Pr3+ estimated from transmission electron microscopy is about 180-200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell-Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole-Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO3. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of pipe diameter (D) on the vertical uplift resistance of a long horizontal pipeline embedded in sand has been investigated. The analysis has been performed by using the lower bound finite-element limit analysis in combination with nonlinear optimization. Three well-defined phi versus sigma(m) curves reported from literature for different sands have been used. It is observed that for a given embedment ratio, with an increase in pipe diameter, the magnitude of the uplift factor (F-gamma) reduces quite significantly, which indicates the importance of considering scale effects while designing buried pipe lines. The scale effects have been found to become even more substantial with an increase in the embedment ratio. The analysis compares well with various theoretical results reported from literature. On the other hand, as compared to available centrifuge test results, the present analysis has been found to provide quite a higher magnitude of the uplift resistance when the theoretical prediction is based on peak soil friction angle. However, if the theoretical analysis is performed by using the friction angle that accounts for the progressive shear failure, the difference between the theoretical and centrifuge test results decreases quite significantly.(C) 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes, VO(acac)(L)Cl] (1), VO(cur)(L)Cl] (2), and VO(scur)(L)Cl] (3) {acac = acetylacetonate, cur = curcumin monoanion, scur = diglucosylcurcumin monoanion, L = 11-(9-acridinyl)dipyrido3, 2-a:2',3'-c]phenazine (acdppz)}, were prepared and characterized. The complexes are non-electrolytic in DMF and 1:1 electrolytic in aqueous DMF. The one-electron paramagnetic complexes showed a d-d band near 725 nm in aqueous DMF and green emission near 520 nm in aqueous DMSO. The complexes exhibited an irreversible V-IV/V-III redox response near -0.85 V versus SCE in aqueous DMF. The complexes showed good binding strengths to calf thymus DNA (K-b: 3.1x10(5)-9.6x10(5) M-1) and efficient pUC19 DNA photocleavage activity in red light of 705 and 785 nm by singlet oxygen (O-1(2)) pathway. Complexes 1 and 2 exhibited significant photocytotoxicity (IC50: 0.1-1.0 M) in visible light (400-700 nm) with low dark toxicity (IC50: >20 M) in HeLa and HaCaT cells. Complex 3 was cytotoxic in both light and dark. DNA ladder formation experiments indicated cell death via apoptotic pathway. Confocal microscopy done with 1 and 2 revealed primarily cytosolic localization of the complexes with significant presence of the complex in the mitochondria as evidenced from the imaging data using mitotracker red.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HORMA domain (for Hop1p, Rev7p and MAD2) was discovered in three chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae. This domain has also been found in proteins with similar functions in organisms including plants, animals and nematodes. The HORMA domain containing proteins are thought to function as adaptors for meiotic checkpoint protein signaling and in the regulation of meiotic recombination. Surprisingly, new work has disclosed completely unanticipated and diverse functions for the HORMA domain containing proteins. A. M. Villeneuve and colleagues (Schvarzstein et al., 2013) show that meiosis-specific HORMA domain containing proteins plays a vital role in preventing centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Another recent study reveals that S. cerevisiae Atg13 HORMA domain acts as a phosphorylation-dependent conformational switch in the cellular autophagic process. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembly of a chloro-bridged half-sandwich p-cymene ruthenium(II) complex Ru-2(mu-Cl-2)(eta(6)-p-cymene)(2)Cl-2] 1 with linear ditopic donor L; trans-1,2-bis(4-pyridyl) ethylene] in presence of 2 eq. AgNO3 in CH3CN yielded a chloro-bridged molecular rectangle 2. The rectangle 2 was isolated as nitrate salt in high yield (90 %) and characterized by infra-red, H-1 NMR spectroscopy including ESI-MS analyses. Molecular structure of 2 was determined by single crystal X-ray diffraction study The diffraction analysis shows that 2 adopts a tetranuclear rectangular geometry with the dimensions of 5.51 angstrom x 13.29 angstrom and forming an infinite supramolecular chain with large internal porosity arising through multiple pi-pi and CH-pi interactions between the adjacent rectangles. Furthermore, rectangle 2 is used as selective receptor for phenolic-nitroaromatic compounds such as picric acid, dinitrophenol and nitrophenol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical uplift resistance of long pipes buried in sands and subjected to pseudostatic seismic forces has been computed by using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The soil mass is assumed to follow the Mohr-Coulomb failure criterion and an associated flow rule. The failure load is expressed in the form of a nondimensional uplift factor F-gamma. The variation of F-gamma is plotted as a function of the embedment ratio of the pipe, horizontal seismic acceleration coefficient (k(h)), and soil friction angle (phi). The magnitude of F-gamma is found to decrease continuously with an increase in the horizontal seismic acceleration coefficient. The reduction in the uplift resistance becomes quite significant, especially for greater values of embedment ratios and lower values of friction angle. The predicted uplift resistance was found to compare well with the existing results reported from the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T-protein, an aminomethyltransferase, represents one of the four components of glycine cleavage system (GCS) and catalyzes the transfer of methylene group from H-protein intermediate to tetrahydrofolate (THF) forming N-5, N-10-methylene THF (CH2-THF) with the release of ammonia. The malaria parasite genome encodes T-, H- and L-proteins, but not P-protein which is a glycine decarboxylase generating the aminomethylene group. A putative GCS has been considered to be functional in the parasite mitochondrion despite the absence of a detectable P-protein homologue. In the present study, the mitochondrial localization of T-protein in the malaria parasite was confirmed by immunofluorescence and its essentiality in the entire parasite life cycle was studied by targeting the T-protein locus in Plasmodium berghei (Pb). PbT knock out parasites did not show any growth defect in asexual, sexual and liver stages indicating that the T-protein is dispensable for parasite survival in vertebrate and invertebrate hosts. The absence of P-protein homologue and the non-essentiality of T protein suggest the possible redundancy of GCS activity in the malaria parasite. Nevertheless, the H- and L-proteins of GCS could be essential for malaria parasite because of their involvement in alpha-lcetoacid dehydrogenase reactions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Serovars of Salmonella enterica, namely Typhi and Typhimurium, reportedly, are the bacterial pathogens causing systemic infections like gastroenteritis and typhoid fever. To elucidate the role and importance in such infection, the proteins of the Type III secretion system of Salmonella pathogenicity islands and two component signal transduction systems, have been mainly focused. However, the most indispensable of these virulent ones and their hierarchical role has not yet been studied extensively. Results: We have adopted a theoretical approach to build an interactome comprising the proteins from the Salmonella pathogeneicity islands (SPI) and two component signal transduction systems. This interactome was then analyzed by using network parameters like centrality and k-core measures. An initial step to capture the fingerprint of the core network resulted in a set of proteins which are involved in the process of invasion and colonization, thereby becoming more important in the process of infection. These proteins pertained to the Inv, Org, Prg, Sip, Spa, Ssa and Sse operons along with chaperone protein SicA. Amongst them, SicA was figured out to be the most indispensable protein from different network parametric analyses. Subsequently, the gene expression levels of all these theoretically identified important proteins were confirmed by microarray data analysis. Finally, we have proposed a hierarchy of the proteins involved in the total infection process. This theoretical approach is the first of its kind to figure out potential virulence determinants encoded by SPI for therapeutic targets for enteric infection. Conclusions: A set of responsible virulent proteins was identified and the expression level of their genes was validated by using independent, published microarray data. The result was a targeted set of proteins that could serve as sensitive predictors and form the foundation for a series of trials in the wet-lab setting. Understanding these regulatory and virulent proteins would provide insight into conditions which are encountered by this intracellular enteric pathogen during the course of infection. This would further contribute in identifying novel targets for antimicrobial agents. (C) 2014 Elsevier Ltd. All rights reserved.