95 resultados para 12-MOLYBDOPHOSPHORIC ACID
Resumo:
The ternary solubilities of solid isomers of nitrobenzoic acid (NBA) were experimentally determined at 308, 318 and 328K over a pressure range of 12-18 MPa in supercritical carbon dioxide (SCCO2). Compared to its binary solubility, the ternary solubilities of m-NBA increased at 308 K while it decreased at 328 K. However, the ternary solubilities of p-NBA increased at all temperatures and pressures except at 13 MPa and 328K. A new model was developed by applying solution model and activity coefficient model for the ternary solubilities of pharmaceutical and non-pharmaceutical solid mixtures in terms of temperature, density and cosolute composition. The model equation involves four temperature independent constraint-free parameters. The model equation correlates the ternary solubilities of seven pharmaceutical solid mixtures along with current data with an average AARD around 9.5% and sixteen non-pharmaceutical solid mixtures with 9% AARD. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.
Resumo:
Backbone alkylation has been shown to result in a dramatic reduction in the conformational space that is sterically accessible to a-amino acid residues in peptides. By extension, the presence of geminal dialkyl substituents at backbone atoms also restricts available conformational space for beta and ? residues. Five peptides containing the achiral beta 2,2-disubstituted beta-amino acid residue, 1-(aminomethyl)cyclohexanecarboxylic acid (beta 2,2Ac6c), have been structurally characterized in crystals by X-ray diffraction. The tripeptide Boc-Aib-beta 2,2Ac6c-Aib-OMe (1) adopts a novel fold stabilized by two intramolecular H-bonds (C11 and C9) of opposite directionality. The tetrapeptide Boc-Aib-beta 2,2Ac6c]2-OMe (2) and pentapeptide Boc-Aib-beta 2,2Ac6c]2-Aib-OMe (3) form short stretches of a hybrid a beta C11 helix stabilized by two and three intramolecular H-bonds, respectively. The structure of the dipeptide Boc-Aib-beta 2,2Ac6c-OMe (5) does not reveal any intramolecular H-bond. The aggregation pattern in the crystal provides an example of an extended conformation of the beta 2,2Ac6c residue, forming a polar sheet like H-bond. The protected derivative Ac-beta 2,2Ac6c-NHMe (4) adopts a locally folded gauche conformation about the C beta?Ca bonds (?=-55.7 degrees). Of the seven examples of beta 2,2Ac6c residues reported here, six adopt gauche conformations, a feature which promotes local folding when incorporated into peptides. A comparison between the conformational properties of beta 2,2Ac6c and beta 3,3Ac6c residues, in peptides, is presented. Backbone torsional parameters of H-bonded a beta/beta a turns are derived from the structures presented in this study and earlier reports.
Resumo:
The toplogical features of a sporadic trifurcated C-H center dot center dot center dot O interaction region, where an oxygen atom acts as an acceptor of three weak hydrogen bonds, has been investigated by experimental and theoretical charge density analysis of ferulic acid. The interaction energy of the asymmetric molecular dimer formed by the trifurcated C-H center dot center dot center dot O motif, based on the multipolar model, is shown to be greater than the corresponding asymmetric O-H center dot center dot center dot O dimer in this crystal structure. Further, the hydrogen bond energies associated with these interaction motifs have been estimated from the local kinetic and potential energy densities at the bond critical points. The trends suggest that the interaction energy of the trifurcated C-H center dot center dot center dot O region is comparable to that of a single O-H center dot center dot center dot O hydrogen bond.
Resumo:
A family of 4-hydroxybenzamide-dicarboxylic acid cocrystals has been designed and subsequently isolated and characterized. The design strategy follows from an understanding of synthon modularity in crystal structures of monocomponent crystals such as gamma-quinol, 4,4'-biphenol and 4-hydroxybenzoic acid. These monocomponent structures contain infinite O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot cooperative synthons linked with molecular connectors such as phenyl and biphenyl, and supramolecular connectors such as the acid dimer in 4-hydroxybenzoic acid. The cocrystal design was influenced by the anticipation that dicarboxylic acids can form a supramolecular connector mediated by acid-amide synthons with 4-hydroxybenzamide, which can then form the phenol O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot infinite synthon. Effectively, the acid-amide and phenol synthons are insulated. The short axis of such a structure will be around 5.12 angstrom and this is borne out in 2:1 cocrystals of 4-hydroxybenzamide with oxalic, succinic, fumaric, glutaric (two forms) and pimelic acids. Hydrated variations of this structure type are seen in the cocrystals obtained with adipic and sebacic acids.
Resumo:
A 12 V Substrate-Integrated PbO2-Activated Carbon hybrid ultracapacitor (SI-PbO2-AC HUCs) with silica-gel sulfuric acid electrolyte is developed and performance tested. The performance of the silica-gel based hybrid ultracapacitor is compared with flooded and AGM-based HUCs. These HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area activated carbon with dense graphite-sheet substrate as negative electrodes. 12 V SI-PbO2-AC HUCs with flooded, AGM and gel electrolytes are found to have capacitance values of 308 F, 184 F, and 269 F at C-rate and can be pulse charged and discharged for 100,000 cycles with only a nominal decrease in their capacitance values. The best performance is exhibited by gel-electrolyte HUCs.
Resumo:
A new family of ricinoleic acid based polyesters was synthesized using catalyst free melt-condensation polymerization with sebacic acid, citric acid, mannitol and ricinoleic acid as precursors. The use of FT-IR and NMR characterisation techniques confirms the presence of ester linkages in the as-synthesized polymers. Depending on the precursor combination, their relative amount and the degree of curing, a broad range of elastic modulus (22-327 MPa) and tensile strength (0.7-12.7 MPa) can be obtained in the newly synthesized biopolymers. The polymers show rubbery behaviour at a physiological temperature (37 degrees C) and the contact angles of the synthesized polymers fall in the range of 42 degrees to 71 degrees, making them ideal substrates to study delivery of drugs through polymer scaffolds. The cytocompatibility assessment of the cured polymers confirmed good cell attachment and growth of smooth muscle cells (C2C12 myoblast cells). Importantly, oriented cell growth was observed after culturing myoblast cells for 3 days. The in vitro degradation in PBS indicates that the mild cured polymers follow a first order reaction kinetics and have degradation rate constants in the range of 0.009-0.038 h(-1), depending on the relative proportions of monomers. Overall, the results of our study indicate that the physical properties can be tailored by varying the composition of the monomers and curing conditions in the newly developed polyesters. Hence, they may be used as potential substrates for tissue engineering scaffolds and for localized drug delivery.
Resumo:
Currently beta-adrenergic receptor blockers are considered to be potential drugs under investigation for preventive or therapeutic effect in osteoporosis. However, there is no published data showing the comparative study of beta-blockers with well accepted agents for the treatment of osteoporosis. To address this question, we compared the effects of propranolol with well accepted treatments like zoledronic acid and alfacalcidol in an animal model of postmenopausal osteoporosis. Five days after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups, randomized to treatments zoledronic acid (100 mu g/kg, intravenous single dose); alfacalcidol (0.5 mu g/kg, oral gauge daily); propranolol (0.1 mg/kg, subcutaneously 5 days per week) for 12 weeks. Untreated OVX and sham OVX were used as controls. At the end of treatment serum calcium and alkaline phosphatase were assayed. Femurs were removed and tested for bone density, bone porosity, bone mechanical properties and trabecular micro-architecture. Propranolol showed a significant decrease in alkaline phosphatase levels and bone porosity in comparison to OVX control. Moreover, propranolol significantly improved bone density, bone mechanical properties and inhibited the deterioration of trabecular microarchitecture when compared with OVX control. The osteoprotective effect of propranolol was comparable with zoledronic acid and alfacalcidol. Based on this comparative study, the results strongly suggest that propranolol can be a candidate therapeutic drug for the management of postmenopausal osteoporosis.
Resumo:
Propranolol, a beta-adrenergic receptor blocker, is presently considered to be a potential therapeutic intervention under investigation for its role in prevention and treatment of osteoporosis. However, no studies have compared the osteoprotective properties of propranolol with well accepted therapeu-tic interventions for the treatment of osteoporosis. To address this question, this study was designed to evaluate the bone protective effects of zoledronic acid, alfacalcidol and propranolol in an animal model of postmenopausal osteoporosis. Five days after ovariectomy, 36 ovariectomized (OVX) rats were divided in- to 6 equal groups, randomized to treatments zoledronic acid (100 μg/kg, intravenous single dose); alfacal-cidol (0.5 μg/kg, oral gauge daily); propranolol (0.1mg/kg, subcutaneously 5 days per week) for 12 weeks. Untreated OVX and sham OVX were used as controls. At the end of the study, rats were killed under anesthesia. For bone porosity evaluation, whole fourth lumbar vertebrae (LV4) were removed. LV4 were also used to measure bone mechanical propeties. Left femurs were used for bone histology. Propranolol showed a significant decrease in bone porosity in comparison to OVX control. Moreover, propranolol sig- nificantly improved bone mechanical properties and bone quality when compared with OVX control. The osteoprotective effect of propranolol was comparable with zoledronic acid and alfacalcidol. Based on this comparative study, the results strongly suggest that propranolol might be new therapeutic intervention for the management of postmenopausal osteoporosis in humans.
Resumo:
Unconstrained gamma(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (alpha gamma)(n) sequences. The C-12 helical conformation for the decapeptide, Boc-Leu-gamma(4)(R)Val](5)-OMe, is established in crystals by X-ray diffraction. A regular C-12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-Leu-gamma(4)(AR)Val](9)-OMe, and a designed 16 residue (alpha gamma)(n) peptide, incorporating variable side chains. Unconstrained (alpha gamma)(n) peptides show an unexpectedly high propensity for helical folding in long polypeptide sequences.
Resumo:
Hydrogen peroxide (H2O2) level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA) oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v) followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was >= 2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be > 12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.
Resumo:
12 V / kilo-Farad (kF) range substrate-integrated lead-carbon hybrid ultracapacitors (HUCs) wherein the conventional positive plates of lead-acid batteries are replaced with substrate-integrated PbO2 positive plates and the negative plates are replaced with carbon-coated graphitic electrodes, providing totally non-faradaic and corrosion-free electrodes, are developed and performance tested. Constant-current discharge data at varying load-currents, constant-power discharge data at varying power values, and the capacitance data at different temperature for a 12 V / kF range substrate-integrated lead-carbon HUC are described along with its resistance, leakage current, self-discharge and cycle-life characteristics.
Resumo:
We conducted the present study to investigate the therapeutic effects of the antiresorptive agent zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALF), in a rat model of postmenopausal osteoporosis. Female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into six groups: (1) sham + vehicle, (2) OVX + vehicle, (3) OVX + ZOL (100 mu g/kg, i.v. single dose), (4) OVX + ZOL (50 mu g/kg, i.v. single dose), (5) OVX + ALF (0.5 mu g/kg, oral gauge daily) and (6) OVX + ZOL (50 mu g/kg, i.v. single dose) + ALF (0.5 mu g/kg, oral gauge daily) for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for bone density, porosity and trabecular micro-architecture. Biochemical markers in serum and urine were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the combination treatment of ZOL and ALF was more effective than each administered as a monotherapy. Moreover, combination therapy using ZOL and ALF preserved the trabecular micro-architecture and cortical bone porosity. Furthermore, the combination treatment of ZOL and ALF corrected the decrease in serum calcium and increase in serum alkaline phosphatase and the tartarate-resistant acid phosphatase level better than single-drug therapy using ZOL or ALF in OVX rats. In addition, the combination treatment of ZOL and ALF corrected the increase in urine calcium, phosphorous and creatinine levels better than single-drug therapy using ZOL or ALF in OVX rats. These data suggest that the combination treatment of ZOL and ALF has a therapeutic advantage over each monotherapy for the treatment of osteoporosis.
Resumo:
The scenario of tuberculosis has gone deadly due to its high prevalence and emergence of widespread drug resistance. It is now high time to develop novel antimycobacterial strategies and to understand novel mechanisms of existing antimycobacterial compounds so that we are equipped with newer tuberculosis controlling molecules in the days to come. Iron has proven to be essential for pathogenesis of tuberculosis and retinoic acid is known to influence the iron metabolism pathway. Retenoic acid is also known to exhibit antitubercular effect in in vivo system. Therefore there is every possibility that retinoic acid by affecting the iron metabolism pathway exhibits its antimycobacterial effect. These aspects are reviewed in the present manuscript for understanding the antimycobacterial role of retinoic acid in the context of iron metabolism and other immunological aspects.
Resumo:
Lead-carbon hybrid ultracapacitors comprise positive lead dioxide plates of the lead-acid battery and negative plates of carbon-based electrical double-layer capacitors (EDLCs). Accordingly, a lead-carbon hybrid ultracapacitor has the features of both the battery and that of an EDLC. In this study, the development and performance comparison between the two types of lead-carbon hybrid ultracapacitors, namely those with substrate-integrated and conventional pasted positive plates, is presented as such a study is lacking in the literature. The study suggests that the faradaic efficiencies for both types of lead-carbon hybrid ultracapacitors are comparable. However, their capacitance values as well as energy and power densities differ significantly. For substrate-integrated positive plate hybrid ultracapacitor, capacitance and energy density values are lower, but power density values are higher than pasted positive plate lead-carbon hybrid ultracapacitors due to their shorter response time. Accordingly, internal resistance values are also lower for substrate-integrated lead-carbon hybrid ultracapacitors. Both types of lead-carbon hybrid ultracapacitors exhibit good cycle life of 100,000 pulse charge-discharge cycles with only a nominal loss in their capacitance values.