120 resultados para 110-673B
Resumo:
An analysis of the nature and distribution of disallowed Ramachandran conformations of amino acid residues observed in high resolution protein crystal structures has been carried out. A data set consisting of 110 high resolution, non-homologous, protein crystal structures from the Brookhaven Protein Data Bank was examined. The data set consisted of a total of 18,708 non-Gly residues, which were characterized on the basis of their backbone dihedral angles (φ, ψ). Residues falling outside the defined “broad allowed limits” on the Ramachandran map were chosen and the reportedB-factor value of the α-carbon atom was used to further select well defined disallowed conformations. The conformations of the selected 66 disallowed residues clustered in distinct regions of the Ramachandran map indicating that specific φ, ψ angle distortions are preferred under compulsions imposed by local constraints. The distribution of various amino acid residues in the disallowed residue data set showed a predominance of small polar/charged residues, with bulky hydrophobic residues being infrequent. As a further check, for all the 66 cases non-hydrogen van der Waals short contacts in the protein structures were evaluated and compared with the ideal “Ala-dipeptide” constructed using disallowed dihedral angle (φ, ψ) values. The analysis reveals that short contacts are eliminated in most cases by local distortions of bond angles. An analysis of the conformation of the identified disallowed residues in related protein structures reveals instances of conservation of unusual stereochemistry.
Resumo:
1] The poor predictability of the Indian summer monsoon ( ISM) appears to be due to the fact that a large fraction of interannual variability (IAV) is governed by unpredictable "internal'' low frequency variations. Mechanisms responsible for the internal IAV of the monsoon have not been clearly identified. Here, an attempt has been made to gain insight regarding the origin of internal IAV of the seasonal ( June - September, JJAS) mean rainfall from "internal'' IAV of the ISM simulated by an atmospheric general circulation model (AGCM) driven by fixed annual cycle of sea surface temperature (SST). The underlying hypothesis that monsoon ISOs are responsible for internal IAV of the ISM is tested. The spatial and temporal characteristics of simulated summer intraseasonal oscillations ( ISOs) are found to be in good agreement with those observed. A long integration with the AGCM forced with observed SST, shows that ISO activity over the Asian monsoon region is not modulated by the observed SST variations. The internal IAV of ISM, therefore, appears to be decoupled from external IAV. Hence, insight gained from this study may be useful in understanding the observed internal IAV of ISM. The spatial structure of the ISOs has a significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season ( seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broad-band nature of the ISO spectrum allowing the time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relation is a manifestation of the binomial character of rainfall time series. The remaining 50% of the IAV may arise due to land-surface processes, interaction between high frequency variability and ISOs, etc.
Resumo:
The x-ray crystal structure of the tetrameric T-antigen-binding lectin from peanut, M(r) 110,000, has been determined by using the multiple isomorphous replacement method and refined to an R value of 0.218 for 22,155 reflections within the 10- to 2.95-A resolution range. Each subunit has essentially the same characteristic tertiary fold that is found in other legume lectins. The structure, however, exhibits an unusual quaternary arrangement of subunits. Unlike other well-characterized tetrameric proteins with identical subunits, peanut lectin has neither 222 (D2) nor fourfold (C4) symmetry. A noncrystallographic twofold axis relates two halves of the molecule. The two monomers in each half are related by a local twofold axis. The mutual disposition of the axes is such that they do not lead to a closed point group. Furthermore, the structure of peanut lectin demonstrates that differences in subunit arrangement in legume lectins could be due to factors intrinsic to the protein molecule and, contrary to earlier suggestions, are not necessarily caused by interactions involving covalently linked sugar. The structure provides a useful framework for exploring the structural basis and the functional implications of the variability in the subunit arrangement in legume lectins despite all of them having nearly the same subunit structure, and also for investigating the general problem of "open" quaternary assembly in oligomeric proteins.
Resumo:
1. A simple method has been devised for the estimation of siderochromes based on their reaction with Folin-Ciocalteu reagent to give a blue complex under alkaline conditions. 2. The applicability of the method to biological systems has been tested with N. crassa and concentrations in the ranges 5–50 μg and 1–10 μg can be accurately estimated with an over-all recovery of 95%.
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for Image -ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace Image -ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas Image -valine and Image -isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
Incorporation of mevalonate-2-C14, acetate-1-C14, and formate-C14 into the lipids of microorganisms was studied. In the case of four bacteria tested—Agrobacterium tumefaciens, Azotobacter vinelandii, Escherichia coli, and a Pseudomonas species—the various homologues of coenzyme Q present were not labeled with any of the tracers used, although significant amounts of radioactivity were present in the lipids. Both acetate and mevalonate were incorporated into coenzyme Q and sterol of the moulds, Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, and Gibberella fujickuroi, and a yeast, Torulopsis utilis. Mevalonate was incorporated into the side chain but not the ring, whereas acetate was incorporated into both. It appears that the mevalonate pathway for the synthesis of coenzyme Q is operative only in those organisms which also contain other isoprene compounds such as sterol and carotene.
Resumo:
A successful plate-method for the preferential isolation of actinomycetes from soils is described. The principles underlying it are: (1) the inhibition of growth of non-sporulating bacteria by pre-incubation at a high temperature (110 C) for 10 min, and (2) limiting the spreading growth of sporeforming bacteria and fungi by the use of dried plates. The majority of the 191 species isolated by this method from 82 soil samples were shown to be pectinolytic.
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for l-ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace l-ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas l-valine and l-isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.
Resumo:
A coaxial capacitance voltage divider with a ratio of 110 and a rise time much less than 2.5 ns was developed for use with a transmission line pulse generator capable of producing 100 kV rectangular pulses of 2 mu s duration. The low voltage arm of the divider is a 3 cm long tube of titania (TiO2) turned out from a cylindrical compact. The compact was made by first pressing titania powder using a suitable binder and then sintering at controlled temperatures. The tube was slipped over the terminating end of the pulse-forming cable to form the divider with the cable capacitance.
Resumo:
We have compared the spectral aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) with those of Aerosol Robotic Network (AERONET) at Kanpur (26.45N, 80.35E), northern India for the pre-monsoon season (March to June, 2001-2005). We found that MODIS systematically overestimates AOD during pre-monsoon season (known to be influenced by dust transport from north-west of India). The errors in AOD were correlated with the MODIS top-of-atmosphere apparent surface reflectance in 2.1 mu m channel (rho*(2.1)). MODIS aerosol algorithm uses p*(2.1) to derive the surface reflectance in visible channels (rho(0.47), rho(0.66)) using an empirical mid IR-visible correlation (rho(0.47) = rho(2.1)/4, rho(0.66) = rho(2.1)/2). The large uncertainty in estimating surface reflectance in visible channels (Delta rho(0.66)+/- 0.04, Delta rho(0.47)+/- 0.02) at higher values of p*(2.1) (p*(2.1) > 0.18) leads to higher aerosol contribution in the total reflected radiance at top-of atmosphere to compensate for the reduced surface reflectance in visible channels and thus leads to overestimation of AOD. This was also reflected in the very low values of AFMF during pre-monsoon whose accuracy depends on the aerosol path radiance in 0.47 and 0.66 mu m channels and aerosol models. The errors in AOD were also high in the scattering angle range 110 degrees-140 degrees, where the effect of dust non-spherity on its optical properties is significant. The direct measurements of spectral surface reflectance are required over the Indo-Gangetic basin in order to validate the mid IR-visible relationship. MODIS aerosol models should also be modified to incorporate the effect of non-spherity of dust aerosols.
Resumo:
Nd0.5Ca0.5MnO3 nanoparticles (average diameter similar to 20 and 40 nm) are synthesized by the polymeric precursor sol-gel method and characterized by various physico-chemical techniques. Quite strikingly, in the 20 nm particles, the charge-ordered (CO) and the antiferromagnetic phases observed in the bulk below 250 K and 160 K, respectively, are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator-to-metal transition at 75 K. The 40 nm particles show a residual CO phase but a transition to the FM state also occurs, at a slightly higher temperature of 110 K.
Resumo:
Amyloid beta (A beta) is the major etiological factor implicated in Alzheimer's disease (AD). A beta(42) self-assembles to form oligomers and fibrils via multiple aggregation process. The recent studies aimed to decrease A beta levels or prevention of A beta aggregation which are the major targets for therapeutic intervention. Natural products as alternatives for AD drug discovery are a current trend. We evidenced that Caesalpinia crista leaf aqueous extract has anti-amyloidogenic potential. The studies on pharmacological properties of C. crista are very limited. Our study focused on ability of C. crista leaf aqueous extract on the prevention of (i) the formation of oligomers and aggregates from monomers (Phase I: A beta(42) + extract co-incubation); (ii) the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) dis-aggregation of pre-formedfibrils (Phase III: aqueous extract added to matured fibrils and incubated for 9 days). The aggregation kinetics was monitored using thioflavin-T assay and transmission electron microscopy (TEM). The results showed that C. crista aqueous extract could able to inhibit the A beta(42) aggregation from monomers and oligomers and also able todis-aggregate the pre-formed fibrils. The study provides an insight on finding new natural products for AD therapeutics. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An extracellular β-glucosidase (EC 3.2.1.21) has been purified to homogeneity from the culture filtrate of a thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce, using duplicating paper as the carbon source. The enzyme was purified 82-fold with a 43% yield by ion-exchange chromatography and gel filtration. The molecular weight of the protein was estimated to be 135,000 by gel filtration and 110,000 by electrophoresis. The sedimentation coefficient was 10.5 S. It was an acidic protein containing high amounts of acidic amino acid residues. It was poor in sulphur-containing amino acids. It also contained 9% carbohydrate. The enzyme activity was optimum at pH 4.5 and at 60°C. The enzyme was stable in the pH range 6–9 for 24 h at 25°C. The enzyme had similar affinities towards cellobiose and p-nitrophenyl-β-d-glucoside with Km values of 0.44 mM and 0.50 mM, respectively. The enzyme was capable of hydrolysing larchwood xylan, xylobiose and p-nitrophenyl-β-d-xyloside, though to a lesser extent. The enzyme was specific for the β-configuration and glucose moiety in the substrate.