834 resultados para SoC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Cu2+-selective metallo(hydro) gelation of a p-pyridyl ended oligophenylenevinylene system is reported over its respective meta- and ortho-regioisomers. The metallogel formed via the self-assembly of the nanoscale-metal-organic particles is injectable and also shows multi-stimuli responsiveness, including thixotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new ruthenium pincer complex RuHCl(CO)(PNP)] (PNP = PhCH2N(CH2CH2PPh2)(2)) (1) was synthesized and characterized. The reactivity of complex 1 with electrophilic reagents XOTf (X = H, CH3, and Me3Si; OTf = CF3SO3) was studied by variable temperature NMR spectroscopy with an aim to observe and characterize sigma complexes of type Ru(eta(2)-HX)Cl(CO)(PNP)]OTf] (X = H (2), CH3 (3), Me3Si (4)). Reaction of complex 1 with HOTf resulted in the formation of the dihydrogen complex, Ru(eta(2)-H-2)Cl(CO)(PNP)OTf] (2). On the other hand, the reaction between complex 1 and MeOTf and Me3SiOTf resulted in the direct elimination of MeCl and Me3SiCl via a S(N)2 type of reaction without the intermediacy of the respective sigma complexes 3 and 4. This contrasting reactivity behaviour has been rationalized taking into consideration the approach of the relatively bulky electrophites CH3+ and Me3Si+ onto the hydride moiety of the ruthenium fragment, which is sterically hindered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the preparation, analysis, and phase transformation behavior of polymorphs and the hydrate of 4-amino-3,5-dinitrobenzamide. The compound crystallizes in four different polymorphic forms, Form I (monoclinic, P2(1)/n), Form II (orthorhombic, Pbca), Form III (monoclinic, P2(1)/c), and Form IV (monoclinic, P2(1)/c). Interestingly, a hydrate (triclinic, P (1) over bar) of the compound is also discovered during the systematic identification of the polymorphs. Analysis of the polymorphs has been investigated using hot stage microscopy, differential scanning calorimetry, in situ variable-temperature powder X-ray diffraction, and single-crystal X-ray diffraction. On heating, all of the solid forms convert into Form I irreversibly, and on further heating, melting is observed. In situ single-crystal X-ray diffraction studies revealed that Form II transforms to Form I above 175 degrees C via single-crystal-to-single-crystal transformation. The hydrate, on heating, undergoes a double phase transition, first to Form III upon losing water in a single-crystal-to-single-crystal fashion and then to a more stable polymorph Form I on further heating. Thermal analysis leads to the conclusion that Form II appears to be the most stable phase at ambient conditions, whereas Form I is more stable at higher temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haloperidol, an antipsychotic drug, was screened for new solid crystalline phases using high throughput crystallization in pursuit of solubility improvement. Due to the highly basic nature of the API, all the solid forms with acids were obtained in the form of salts. Eleven crystalline salts in the form of oxalate (1:1), benzoate (1:1), salicylate (1:1 and 1:2), 4-hydroxybenzoate (1:1), 4-hydroxybenzoate ethyl acetate solvate (1:1:1), 3,4-dihydroxybenzoate (1:1), 3,5-dihydroxybenzoate (1:1), mesylate (1:1), besylate (1:1), and tosylate (1:1) salt were achieved. There is an insertion of carboxylate or sulfonate anion into the hydrogen bonding pattern of haloperidol. The salts with the aliphatic carboxylic acids were found to be more prone to form salt hydrates compared with aromatic carboxylate salts. All the salts were subjected to solubility measurement in water at neutral pH. There was no direct correlation observed between the solubility of the salt and its coformer. All the salts are stable at room temperature as well as after 24 h slurry experiment except the oxalate salt, which showed an unusual phase transformation from its hydrated form to the anhydrous form. A structureproperty relationship was examined to analyze the solubility behavior of the solid forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design of ternary cocrystals based on synthon modularity is described. The strategy is based on the idea of extending synthon modularity in binary cocrystals of 4-hydroxybenzamide:dicarboxylic acids and 4-bromobenzamide:dicarboxylic acids. If a system contains an amide group along with other functional groups, one of which is a carboxylic acid group, the amide associates preferentially with the carboxylic acid group to form an acidamide heterosynthon. If the amide and the acid groups are in different molecules, a higher multicomponent molecular crystal is obtained. This is a stable pattern that can be used to increase the number of components from two to three in a multicomponent system. Accordingly, noncovalent interactions are controlled in the design of ternary cocrystals in a more predictable manner. If a single component crystal with the amideamide dimer is considered, modularity is retained even after formation of a binary cocrystal with acidamide dimers. Similarly, when third component halogen atom containing molecules are introduced into these binary cocrystals, modularity is still retained. Here, we use acidamide and Br/I center dot center dot center dot O2N supramolecular synthons to obtain modularity in nine ternary cocrystals. The acidamide heterosynthon is robust to all the nine cocrystals. Heterosynthons may assist ternary cocrystal formation when there is a high solubility difference between the coformers. For a successful crystal engineering strategy for ternary cocrystals, one must consider the synthon itself and factors like shape and size of the component molecules, as well as the solubilities of the compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article highlights different synthetic strategies for the preparation of colloidal heterostructured nanocrystals, where at least one component of the constituent nanostructure is a semiconductor. Growth of shell material on a core nanocrystal acting as a seed for heterogeneous nucleation of the shell has been discussed. This seeded-growth technique, being one of the most heavily explored mechanisms, has already been discussed in many other excellent review articles. However, here our discussion has been focused differently based on composition (semiconductor@semiconductor, magnet@semiconductor, metal@semiconductor and vice versa), shape anisotropy of the shell growth, and synthetic methodology such as one-step vs. multi-step. The relatively less explored strategy of preparing heterostructures via colloidal sintering of different nanostructures, known as nanocrystal-fusion, has been reviewed here. The ion-exchange strategy, which has recently attracted huge research interest, where compositional tuning of nanocrystals can be achieved by exchanging either the cation or anion of a nanocrystal, has also been discussed. Specifically, controlled partial ion exchange has been critically reviewed as a viable synthetic strategy for the fabrication of heterostructures. Notably, we have also included the very recent methodology of utilizing inorganic ligands for the fabrication of heterostructured colloidal nanocrystals. This unique strategy of inorganic ligands has appeared as a new frontier for the synthesis of heterostructures and is reviewed in detail here for the first time. In all these cases, recent developments have been discussed with greater detail to add upon the existing reviews on this broad topic of semiconductor-based colloidal heterostructured nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of dual enzyme responsive hollow nanocapsules which can be targeted to deliver anticancer agents specifically inside cancer cells. The enzyme responsive elements, integrated in the nanocapsule walls, undergo degradation in the presence of either trypsin or hyaluronidase leading to the release of encapsulated drug molecules. These nanocapsules, which were crosslinked and functionalised with folic acid, showed minimal drug leakage when kept in pH 7.4 PBS buffer, but released the drug molecules at a rapid rate in the presence of either one of the triggering enzymes. Studies on cellular interactions of these nanocapsules revealed that doxorubicin loaded nanocapsules were taken up by cervical cancer cells via folic acid receptor medicated endocytosis. Interestingly the nanocapsules were able to disintegrate inside the cancer cells and release doxorubicin which then migrated into the nucleus to induce cell death. This study indicates that these nanocapsules fabricated from biopolymers can serve as an excellent platform for targeted intracellular drug delivery to cancer cells.