129 resultados para vibrations
Resumo:
Digital fluidic and pneumatic systems incorporate displays for the presentation of information to the operator. Displays reported so far for such systems use moving pistons, tapes, and other mechanisms leading to lower reliability. This paper describes a nonmoving part fluidic display employing the photoelastic effect. The display is pressure actuated and has a long life. When fabricated from compatible materials, this device can withstand hostile environments like nuclear radiation, vibrations, etc. The display is compact, economical and is virtually maintenance free. The display unit has been tested in the laboratory for reliability and speed of response.
Resumo:
The effect of creep on the vibrations of a single degree of freedom system subjected to combined random and deterministic excitation has been studied in this paper. The deterministic part of the excitation is assumed to be a sinusoidal function while the random part of the excitation is considered as a narrow band process with a central frequency equal to the frequency of sinusoidal part of the excitation. Creep, an energy absorbing process, introduces an equivalent damping into the system. A measure of this damping and the statistical properties of the response of the mechanical system have been derived.
Resumo:
The normal coordinate analyses of the 16 in-plane vibrations of thiosemicarbazide and selenosemicarbazide and their deutero analogues have been made using Wilson's GF matrix method and the Urey—Bradley force field. A revision of the vibrational assignments has been made for thiosemicarbazide based on force constant calculations. A discussion of the C=S stretching bands in the free ligand and their metal complexes is given.
Resumo:
Crystal structure determination at room temperature [292 (2) K] of racemic 1,1'-binaphthalene-2,2'-diyl diethyl bis(carbonate), C26H22O6, showed that one of the terminal carbon-carbon bond lengths is very short [Csp(3)-Csp(3) = 1.327 (6) angstrom]. The reason for such a short bond length has been analysed by collecting data sets on the same crystal at 393, 150 and 90 K. The values of the corrected bond lengths clearly suggest that the shortening is mainly due to positional disorder at two sites, with minor perturbations arising as a result of thermal vibrations. The positional disorder has been resolved in the analysis of the 90 K data following the changes in the unit-cell parameters for the data sets at 150 and 90 K, which appear to be an artifact of a near centre of symmetry relationship between the two independent molecules in the space group P (1) over bar at these temperatures. Indeed, the unit cell at low temperature (150 and 90 K) is a supercell of the room-temperature unit cell.
Resumo:
Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.
Resumo:
Calcium sulphate (CaSO4) pseudomicrorods have been synthesized by alow-temperature hydrothermal method using CaSO4 powder as a precursor and hexadecylamine as a surfactant at 180 degrees C for at different intervals of time. The powder X-ray diffraction pattern indicates that the as-formed pseudomicrorods are of orthorhombic phase with lattice parameters a = 7.0023(4) angstrom, b = 6.9939(5) angstrom and c = 6.2434(4) angstrom. Scanning electron microscopy images show that the pseudomicrorods have diameters of about 0.2-2.5 mm and lengths of about 2-10 mm. Fourier transform infrared spectroscopy shows a strong doublet near 609 and 681 cm(-1) arising from nu(4) (SO42) bending vibrations. The strongest band observed at 1132 cm(-1) is associated with nu(3) (SO42-) stretching vibrations. The band near 420-450 cm(-1) is attributed to nu(2) (SO42-) bending vibrations. The Raman spectrum exhibits an intense peak at 1008 cm(-1) associated with the SO42- mode. The photoluminescence spectrum exhibits UV bands (330, 350 nm), strong green bands (402, 436 nm) and weak blue bands (503 nm). A widening of the optical band gap was observed as the particle size decreased.
Resumo:
In this paper, a new approach to the study of non-linear, non-autonomous systems is presented. The method outlined is based on the idea of solving the governing differential equations of order n by a process of successive reduction of their order. This is achieved by the use of “differential transformation functions”. The value of the technique presented in the study of problems arising in the field of non-linear mechanics and the like, is illustrated by means of suitable examples drawn from different fields such as vibrations, rigid body dynamics, etc.
Resumo:
The Raman effect of corundum (sapphire) was measured with an Ar+ laser source. The seven expected Raman active phonons were found and their symmetry characters determined. Assignment of the internal and external vibrations of the crystals was made and the effect of birefringence in the Raman selection rules is discussed.
Resumo:
A molecular model has been developed to study the vibrations of U centres in caesium iodide. Employing the rigid ion model with nearest-neighbour short-range forces, the dynamical matrix of order 27 × 27 was solved to obtain the frequencies of the localized modes and the perturbed lattice modes. The results are compared with those obtained from the Green function method.
Resumo:
Dielectric observations on lithium hydrazinium sulphate have shown earlier that it is ferroelectric over a range of temperatures from below −15° C. to above 80° C. and a new type of hydrogen bond rearrangement which would allow the protons to migrate along the chain has also been suggested by others. The infrared spectrum of LiH z S in the form of mull and as single crystal sections parallel and perpendicular to the ‘C’ axis exhibit about 21 well-defined absorption maxima. The position and the width of the maxima agree with the known structure of the crystal according to which the hydrazine group exists in the form of the hydrazinium ion, NH2·NH3+ and the observed N+-H frequencies agree better with the new correlation curve given by R. S. Krishnan and K. Krishnan (1964). However it has been pointed out that from a comparative study of the new infrared spectra of hydrazonium sulphate and lithium ammonium sulphate that the absorption band at 969 cm.−1 is due to N-N stretching vibration and that the fairly intense band between 2050–2170 cm.−1 is due to the bending vibrations of the NH3+ group.
Resumo:
In this article, we present a comparative study of the Raman spectra of alkali halides in relation to the lattice dynamics ofBorn andRaman. It is shown that the experimentally observed limit of the second-order spectra in almost all the cases can be explained well by the Lyddane-Sachs-Teller relation. It is also seen, while, an explanation of the second-order Raman spectrum of a crystal of diamond or zinc blende structure requires the frequencies from the critical points,W, Gamma, X andL inBorn's analysis, the frequencies fromGamma, X andL alone are sufficient and necessary for an interpretation of the same onRaman's model. Some similarities in the determination of the long wave properties of crystals like elastic constants and limiting frequencies of the lattice vibrations in the symmetry directions in both the models are pointed out.
Resumo:
The Raman spectrum of a single crystal of sulphamic acid has been recorded withλ 2537 excitation. Thirty-eight lines have been observed, of which twenty-nine have been recorded for the first time. Seven Raman lines with shifts in the region 50–155 cm.−1 have been assigned to the lattice oscillations, two at 177 and 240 cm.−1 have been attributed to the low-frequency hydrogen bond vibrations.. The splitting of the degenerate modes and the appearance of N-H....O bonded stretching vibrations are consistent with the structural data which expect the presence of the free molecule as a Zwitter ion with only slight distortion from C3v symmetry.
Resumo:
The Raman spectrum of a single crystal of cadmium acetate dihydrate has been recorded for the first time using λ 2537 excitation. Twenty-three lines have been observed out of which ten have been attributed to the internal oscillations of the acetate ion, nine to the lattice modes, two to low-frequency hydrogen bond vibrations. A line at 308 cm.−1 and the continuum 3250–3560 cm.−1 have been assigned to the Cd-O6 and internal vibrations of the water molecules.
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.
Resumo:
The Raman spectrum of guanidinium aluminium sulphate hexahydrate also known as ‘GASH’ which is a ferro-electric crystal and has strong hydrogen bonds has been recorded. 38 Raman lines have been identified in the spectra of GASH. The O-H stretching mode is found to be very much influenced by the hydrogen bond and they appear over a widely extended region from 2240–3600 cm.−1 It can therefore be concluded that all the O-H bonds are hydrogen bonded and some of them are quite strong. The Raman lines due to the N-H vibrations appear with the normal frequency shifts indicating thereby that N-H bonds are not hydrogen bonded. These conclusions are fully supported by the results obtained from the X-ray crystal structure analysis of GASH. The principal vibrations of the Al-(OH2)6 groups have also been identified.