137 resultados para transitional change
Resumo:
Reported distress to an industrial structure from phosphate/sulfate contamination of kaolinitic foundation soil at an industrial location in Southern India prompted this laboratory study. The study examines the short-term effect of sodium sulfate/phosphate contamination on the swell/compression characteristics of a commercial kaolinite. Experimental results showed that the unsaturated contaminated kaolinite specimens exhibited slightly higher swell potentials and lower compressions than the unsaturated uncontaminated kaolinite specimens. It is suggested that the larger double layer promoted by the increased exchangeable sodium ion concentration is responsible for the slightly higher swell potentials and lower compressions of the unsaturated contaminated kaolinite specimens.
Resumo:
In this paper, the role of melt convection on the performance of heat sinks with phase change material (PCM) is investigated numerically. The heat sink consists of aluminum plate fins embedded in PCM, and is subjected to heat flux supplied from the bottom. A single-domain enthalpy-based CFD model is developed, which is capable of simulating the phase change process and the associated melt convection. The CFD model is coupled with a genetic algorithm for carrying out the optimization. Two cases are considered, namely, one without melt convection (i.e., conduction heat transfer analysis), and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of melt convection in the design of heat sinks with PCMs. In the case of conduction analysis, the optimum width of half fin (i.e., sum of half pitch and half fin thickness) is a constant, which is in good agreement with results reported in the literature. On the other hand, if melt convection is considered, the optimum half fin width depends on the effective thermal diffusivity due to conduction and convection. With melt convection, the optimized design results in a significant improvement of operational time.
Resumo:
Crystal structures of three heptapeptides Boc-Ala-Leu-Aib-XXX-Ala-Leu-Aib-OMe (where XXX = methionine in peptide A, selenomethionine in peptide B, and S-benzyl cysteine in peptide C) reveal mixed 3(10)-/alpha-helical conformations with R factors of 6.94, 5.79, and 5.98, respectively. All the structures were solved in the P2(1)2(1)2(1) space group. 3(10)- to a-helical transitions are observed in all of these peptides. The helices begin as a 3(10)-helical segment at the N-terminus and then transit for peptides A and C at residue Aib(3) carbonyl (O(3)), while for peptide B the transition occurs at residue Leu(2) carbonyl oxygen (O(2)). There are water molecules associated in the crystal of each of these peptides and they form different types of hydrogen bonding patterns in each crystal. The observations suggest that 3(10)- to alpha-helical transition is sequence dependent in these short heptapeptide sequences.
Resumo:
A neural network has been used to predict the flow intermittency from velocity signals in the transition zone in a boundary layer. Unlike many of the available intermittency detection methods requiring a proper threshold choice in order to distinguish between the turbulent and non-turbulent parts of a signal, a trained neural network does not involve any threshold decision. The intermittency prediction based on the neural network has been found to be very satisfactory.
Resumo:
The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A nondimensional number that is constant in two-dimensional, incompressible and constant pressure laminar and fully turbulent boundary, layer flows has been proposed. An extension of this to constant pressure transitional flow is discussed.
Resumo:
A pseudo-spectral method based on Fourier expansions in a Cartesian coordinate system is shown to be an economical method for direct numerical simulation studies of transitional round jets, Several characteristics of the solutions are presented to establish the validity of the solutions in spite of the unnatural choices. We show that neither periodicity, nor the use of a Cartesian system have adversely affected the simulations, Instead, there are benefits in terms of ease of computing and lack of the usual restrictions due to grid structure near the jet axis. By computing the simultaneous evolution of passive scalers, the process of reaction in round jet burners, between a fuel-laden jet and an ambient oxidizer, was also simulated. Some typical solutions are shown and then the results of analysis of these data are summarized. (C) 2001 Elsevier Science Ltd, All rights reserved.
Resumo:
An entirely different approach for localisation of winding deformation based on terminal measurements is presented. Within the context of this study, winding deformation means, a discrete and specific change externally imposed at a particular position on the winding. The proposed method is based on pre-computing and plotting the complex network-function loci e.g. driving-point impedance (DPI)] at a selected frequency, for a meaningful range of values for each element (increasing and decreasing) of the ladder network which represents the winding. This loci diagram is called the nomogram. After introducing a discrete change, amplitude and phase of DPI are measured. By plotting this single measurement on the nomogram, it is possible to estimate the location and identify the extent of change. In contrast to the existing approach, the proposed method is fast, non-iterative and yields reasonably good localisation. Experimental results for actual transformer windings (interleaved and continuous disc) are presented.
Resumo:
In this paper we develop an analytical heat transfer model, which is capable of analyzing cyclic melting and solidification processes of a phase change material used in the context of electronics cooling systems. The model is essentially based on conduction heat transfer, with treatments for convection and radiation embedded inside. The whole solution domain is first divided into two main sub-domains, namely, the melting sub-domain and the solidification sub-domain. Each sub-domain is then analyzed for a number of temporal regimes. Accordingly, analytical solutions for temperature distribution within each subdomain are formulated either using a semi-infinity consideration, or employing a method of quasi-steady state, depending on the applicability. The solution modules are subsequently united, leading to a closed-form solution for the entire problem. The analytical solutions are then compared with experimental and numerical solutions for a benchmark problem quoted in the literature, and excellent agreements can be observed.
Resumo:
SrTiO3:Pr3+,Al3+ phosphor samples with varying ratios of Sr/Ti/Al were prepared by the gel-carbonate method and the mechanism of enhancement of the red photoluminescence intensity therein was investigated. The photoluminescence (PL) spectra of SrTiO3:Pr3+ show both D-1(2) --> H-3(4) and P-3(0) --> H-3(4) emission in the red and blue spectral regions, respectively, with comparable intensity. The emission intensity of D-1(2) --> H-3(4) is drastically enhanced by the incorporation of Al3+ and excess Ti4+ in the compositional range Sr(Ti,Al-y)(O3+3y/2):Pr3+ (0.2 less than or equal to y less than or equal to 0.4) and SrTi1+xAlyO3+z:Pr3+ (0.2 less than or equal to x less than or equal to 0.5; 0.05 less than or equal to y less than or equal to 0.1; z = 2x + 3y/2) with the complete disappearance of the blue band. This cannot be explained by the simple point defect model as the EPR studies do not show any evidence for the presence of electron or hole centers. TEM investigations show the presence of exsolved nanophases of SrAl12O19 and/or TiO2 in the grain boundary region as well as grain interiors as lamellae which, in turn, form the solid-state defects, namely, dislocation networks, stacking faults and crystallographic shear planes whereby the framework of corner shared TiO6 octehedra changes over to edge-sharing TiO5-AlO5 strands as indicated from the Al-27 MAS NMR studies. The presence of transitional nanophases and the associated defects modify the excitation-emission processes by way of formation of electronic sub-levels at 3.40 and 4.43 eV, leading to magnetic-dipole related red emission with enhanced intensity. This is evidenced by the fact that SrAl12O19:Pr3+,Ti4+ shows bright red emission whereas SrAl12O19:Pr3+ does not show red photoluminescence.
Resumo:
An assessment of the impact of projected climate change on forest ecosystems in India based on climate projections of the Regional Climate Model of the Hadley Centre (HadRM3) and the global dynamic vegetation model IBIS for A1B scenario is conducted for short-term (2021-2050) and long-term (2071-2100) periods. Based on the dynamic global vegetation modelling, vulnerable forested regions of India have been identified to assist in planning adaptation interventions. The assessment of climate impacts showed that at the national level, about 45% of the forested grids is projected to undergo change. Vulnerability assessment showed that such vulnerable forested grids are spread across India. However, their concentration is higher in the upper Himalayan stretches, parts of Central India, northern Western Ghats and the Eastern Ghats. In contrast, the northeastern forests, southern Western Ghats and the forested regions of eastern India are estimated to be the least vulnerable. Low tree density, low biodiversity status as well as higher levels of fragmentation, in addition to climate change, contribute to the vulnerability of these forests. The mountainous forests (sub-alpine and alpine forest, the Himalayan dry temperate forest and the Himalayan moist temperate forest) are susceptible to the adverse effects of climate change. This is because climate change is predicted to be larger for regions that have greater elevations.