80 resultados para theca and egg envelope
Resumo:
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as similar to 20 mu m(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Resumo:
The title compound I (24-(S)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P2(1)2(1)2(1) with Z = 4. The unit cell dimensions are a = 6.701(2)Angstrom, b = 11.506(8)Angstrom, c = 32.183(4)Angstrom, V = 2481(2)Angstrom (3), D-cal = 1.077 Mg/m(3). The tide compound II (24-(R)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P212121 with two molecules per assymetric unit and with Z = 8. The Unit cell dimensions are a = 10.954(2)Angstrom, b = 21.757(6)Angstrom, c = 21.130(7)Angstrom, V = 5035.0(2)Angstrom (3), D-cal = 1.062 Mg/m(3). In compound I and in both the molecules of compound II, the rings A, B & C are in chair conformation and the five membered ring D is in envelope conformation. The priority sequence attached to the chiral carbon C24 has "S" designation in compound I and "R" designation in compound II. The structures are stabilized by C-H . . .O and O-H---O hydrogen bonds.
Resumo:
We describe here the characterization of the gene gp64 encoding the envelope fusion protein GP64 (open reading frame) ORF 105 from Bombyx mori nucleopolyhedrovirus (BmNPV). gp64 was transcribed from the early to late stages of infection and the transcripts were seen from 6 to 72 h post infection (hpi). The early transcripts initiated from a consensus CAGT motif while the late transcripts arose from three conserved TAAG motifs, all of which were located in the near upstream region of the coding sequence. Both early and late transcripts terminated at a run of T residues following the second polyadenylation signal located 31 nt downstream of the translation termination codon. BmGP64 protein was detectable from 6 hpi and was present in larger quantities throughout the infection process from 12 hpi, in BmNPV-infected BmN cells. The persistent presence of GP64 in BmN cells differed from the protein expression pattern of GP64 in Autographa californica multinucleocapsid nucleopolyhedrovirus infection, where the protein levels decreased significantly by late times (48 hpi). BmGP64 was located in the membrane and cytoplasm of the infected host cells and as a component of the budded virions. The production of infectious budded virus and the fusion activity were reduced when glycosylation of GP64 was inhibited. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.
Resumo:
Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.
Resumo:
We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.
Resumo:
The ultrastructural functions of the electron-dense glycopeptidolipid-containing outermost layer (OL), the arabinogalactan-mycolic acid-containing electron-transparent layer (ETL), and the electron-dense peptidoglycan layer (PGL) of the mycobacterial cell wall in septal growth and constriction are not clear. Therefore, using transmission electron microscopy, we studied the participation of the three layers in septal growth and constriction in the fast-growing saprophytic species Mycobacterium smegmatis and the slow-growing pathogenic species Mycobacterium xenopi and Mycobacterium tuberculosis in order to document the processes in a comprehensive and comparative manner and to find out whether the processes are conserved across different mycobacterial species. A complete septal partition is formed first by the fresh synthesis of the septal PGL (S-PGL) and septal ETL (S-ETL) from the envelope PGL (E-PGL) in M. smegmatis and M. xenopi. The S-ETL is not continuous with the envelope ETL (E-ETL) due to the presence of the E-PGL between them. The E-PGL disappears, and the S-ETL becomes continuous with the E-ETL, when the OL begins to grow and invaginate into the S-ETL for constriction. However, in M. tuberculosis, the S-PGL and S-ETL grow from the E-PGL and E-ETL, respectively, without a separation between the E-ETL and S-ETL by the E-PGL, in contrast to the process in M. smegmatis and M. xenopi. Subsequent growth and invagination of the OL into the S-ETL of the septal partition initiates and completes septal constriction in M. tuberculosis. A model for the conserved sequential process of mycobacterial septation, in which the formation of a complete septal partition is followed by constriction, is presented. The probable physiological significance of the process is discussed. The ultrastructural features of septation and constriction in mycobacteria are unusually different from those in the well-studied organisms Escherichia coli and Bacillus subtilis.
Resumo:
Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure. (c) 2012 IUBMB IUBMB Life, 2012
Resumo:
Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a new sub-band approach to estimate the glottal activity. The method is based on the spectral harmonicity and the sub-band temporal properties of voiced speech. We propose a method to represent glottal excitation signal using sub-band temporal envelope. Instants of maximum glottal excitation or Glottal Closure Instants (GCI) are extracted from the estimated glottal excitation pattern and the result is compared with a standard GCI computation method, DYPSA [1]. The performance of the algorithm is also compared for the noisy signal and it is shown that the proposed method is less variant to GCI estimation under noisy conditions compared to DYPSA. The algorithm is evaluated on the CMU-ARCTIC database.
Resumo:
Transient signals such as plosives in speech or Castanets in audio do not have a specific modulation or periodic structure in time domain. However, in the spectral domain they exhibit a prominent modulation structure, which is a direct consequence of their narrow time localization. Based on this observation, a spectral-domain AM-FM model for transients is proposed. The spectral AM-FM model is built starting from real spectral zero-crossings. The AM and FM correspond to the spectral envelope (SE) and group delay (GD), respectively. Taking into account the modulation structure and spectral continuity, a local polynomial regression technique is proposed to estimate the GD function from the real spectral zeros. The SE is estimated based on the phase function computed from the estimated GD. Since the GD estimation is parametric, the degree of smoothness can be controlled directly. Simulation results based on synthetic transient signals generated using a beta density function are presented to analyze the noise-robustness of the SEGD model. Three specific applications are considered: (1) SEGD based modeling of Castanet sounds; (2) appropriateness of the model for transient compression; and (3) determining glottal closure instants in speech using a short-time SEGD model of the linear prediction residue.
Resumo:
We address the problem of temporal envelope modeling for transient audio signals. We propose the Gamma distribution function (GDF) as a suitable candidate for modeling the envelope keeping in view some of its interesting properties such as asymmetry, causality, near-optimal time-bandwidth product, controllability of rise and decay, etc. The problem of finding the parameters of the GDF becomes a nonlinear regression problem. We overcome the hurdle by using a logarithmic envelope fit, which reduces the problem to one of linear regression. The logarithmic transformation also has the feature of dynamic range compression. Since temporal envelopes of audio signals are not uniformly distributed, in order to compute the amplitude, we investigate the importance of various loss functions for regression. Based on synthesized data experiments, wherein we have a ground truth, and real-world signals, we observe that the least-squares technique gives reasonably accurate amplitude estimates compared with other loss functions.
Resumo:
We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which occurred in Bay of Bengal during May 2009.
Resumo:
Fruit fly Drosophila melanogaster females display rhythmic egg-laying under 12: 12 h light/dark (LD) cycles which persists with near 24 h periodicity under constant darkness (DD). We have shown previously that persistence of this rhythm does not require the neurons expressing pigment dispersing factor (PDF), thought to be the canonical circadian pacemakers, and proposed that it could be controlled by peripheral clocks or regulated/triggered by the act of mating. We assayed egg-laying behaviour of wild-type Canton S (CS) females under LD, DD and constant light (LL) conditions in three different physiological states; as virgins, as females allowed to mate with males for 1 day and as females allowed to mate for the entire duration of the assay. Here, we report the presence of a circadian rhythm in egg-laying in virgin D. melanogaster females. We also found that egg-laying behaviour of 70 and 90% females from all the three male presence/absence protocols follows circadian rhythmicity under DD and LL, with periods ranging between 18 and 30 h. The egg-laying rhythm of all virgin females synchronized to LD cycles with a peak occurring soon after lights-off. The rhythm in virgins was remarkably robust with maximum number of eggs deposited immediately after lights-off in contrast to mated females which show higher egg-laying during the day. These results suggest that the egg-laying rhythm of D. melanogaster is endogenously driven and is neither regulated nor triggered by the act of mating; instead, the presence of males results in reduction in entrainment to LD cycles.
Resumo:
Differential occupancy of space can lead to species coexistence. The fig-fig wasp pollination system hosts species-specific pollinating and parasitic wasps that develop within galls in a nursery comprising a closed inflorescence, the syconium. This microcosm affords excellent opportunities for investigating spatial partitioning since it harbours a closed community in which all wasp species are dependent on securing safe sites inside the syconium for their developing offspring while differing in life history, egg deposition strategies and oviposition times relative to nursery development. We determined ontogenetic changes in oviposition sites available to the seven-member fig wasp community of Ficus racemosa comprising pollinators, gallers and parasitoids. We used species distribution models (SDMs) for the first time at a microcosm scale to predict patterns of spatial occurrence of nursery occupants. SDMs gave high true-positive and low false-positive site occupancy rates for most occupants indicating species specificity in oviposition sites. The nursery microcosm itself changed with syconium development and sequential egg-laying by different wasp species. The number of sites occupied by offspring of the different wasp species was negatively related to the risk of syconium abortion by the plant host following oviposition. Since unpollinated syconia are usually aborted, parasitic wasps ovipositing into nurseries at the same time as the pollinator targeted many sites, suggesting response to lower risk of syconium abortion owing to reduced risk of pollination failure compared to those species ovipositing before pollination. Wasp life history and oviposition time relative to nursery development contributed to the co-existence of nursery occupants.