61 resultados para temporal sequencing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the problem of temporal self organization using activity diffusion based on the neural gas (NGAS) algorithm. Using a potential function formulation motivated by a spatio-temporal metric, we derive an adaptation rule for dynamic vector quantization of data. Simulations results show that our algorithm learns the input distribution and time correlation much faster compared to the static neural gas method over the same data sequence under similar training conditions.