156 resultados para surface oxygen complexes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexes of lanthanide iodides with 4-methylpyridine-1-oxide and 2-methylpyridine-1-oxide of the formulae Ln(4-MePyO)8I3.xH2O (x=0 or 2) and Ln(2-MePyO)5I3.xH2O (x=0, 1 or 3) have been prepared and characterized by analyses, conductance, infrared and proton NMR data. Infrared spectra of the complexes indicate that the coordination of the ligand to the metal ion takes place through the oxygen of the N-O group of the ligand. Proton NMR data for the paramagnetic complexes indicate that both contact and pseudocontact interactions are responsible for the isotropic shifts. Proton NMR spectra of the 2-methylpyridine-1-oxide complexes indicate a restricted rotation of the ligand about the N-O group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adducts of lanthanide perchlorates with 4-nitro and 4-chloro pyridine-Noxides (4-NPNO and 4-CPNO respectively) have been synthesised for the first time and characterised by analysis, electrolytic conductance, infrared, proton-NMR and electronic spectral data. The complexes are of the compositions Ln2(NPNO)15 (ClO4)6 (Ln = La, Pr, Nd and Gd), Tb(NPNO), (C1O4)6), Ln2(NPNO)13 (C1O4)6) (Ln = Dy, Ho, and Yb); Ln (CPNO)8 (C104)3) (Ln = La, Pr, Nd, Tb, Dy, Ho and Yb) and Ln(CPNO), (C1O4)3) (Ln = Sm and Gd). Conductivity and IR data provide evidence for the non-coordinated nature of the perchlorate groups. IR and NMR spectra suggest coordinationvia the oxygen of the N-oxide group. Electronic spectral shapes of the Nd+3 and Ho+3 complexes are interpreted in terms of eight-and seven-coordinate environments in the case of 4-NPNO complexes and eight-coordination in the case of 4-CPNO complexes. IR data indicate bridged structure in NPNO complexes of lanthanides other than Tb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (DeltaCp), enthalpy (DeltaH) and entropy (DeltaS) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (DeltaCp) and enthalpy (DeltaH) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of surface aeration systems, among other key design variables, depends upon the geometric parameters of the aeration tank. Efficient performance and scale up or scale down of the experimental results of an aeration ystem requires optimal geometric conditions. Optimal conditions refer to the conditions of maximum oxygen transfer rate, which assists in scaling up or down the system for ommercial utilization. The present work investigates the effect of an aeration tank's shape (unbaffled circular, baffled circular and unbaffled square) on oxygen transfer. Present results demonstrate that there is no effect of shape on the optimal geometric conditions for rotor position and rotor dimensions. This experimentation shows that circular tanks (baffled or unbaffled) do not have optimal geometric conditions for liquid transfer, whereas the square cross-section tank shows a unique geometric shape to optimize oxygen transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes [VOCl(B)(2)]Cl (1-3) of phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3), have been prepared, characterized and their DNA and protein binding, photo-induced DNA and protein cleavage activity andm photocytotoxicity have been studied. Complex 2, structurally characterized by X-ray crystallography, shows the presence of a vanadyl group in VOClN4 coordination geometry. The dpq ligand displays a chelating mode of binding with a N-donor site trans to the oxo-group. The chloride ligand is cis to the oxo-group. The one-electron paramagnetic complexes show a d-d band near 715 nm in 15% DMF-Tris-HCl buffer. The complexes are redox active exhibiting a V(IV)/V(III) redox couple within -0.5 to -0.7 V vs. SCE in 20% DMF-Tris-HCl/0.1 M KCl. The complexes bind to calf thymus (CT) DNA in the order: 3 (dppz) > 2 (dpq) > 1 (phen). The binding data reveal the groove and/or partial intercalative DNA binding nature of the complexes. The complexes show chemical nuclease'' activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide via a hydroxyl radical pathway. The dpq and dppz complexes are efficient photocleavers of DNA in UV-A light of 365 nm forming reactive singlet oxygen (O-1(2)) and hydroxyl radical ((OH)-O-center dot) species. Complexes 2 and 3 also show DNA cleavage activity in red light (> 750 nm) by an exclusive (OH)-O-center dot pathway. The complexes display a binding propensity to bovine serum albumin (BSA) protein giving K-BSA values in the range of 7.1 x 10(4)-1.8 x 10(5) M-1. The dppz complex 3 shows BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via (OH)-O-center dot pathway. The dppz complex 3 exhibits significant PDT effect in human cervical cancer HeLa cells giving IC50 values of 1.0 mu M and 12.0 mu M in UV-A and visible light, respectively (IC50 = > 100 mu M in the dark).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue [{Cu(2,2'-bipy)(2)}(2){alpha-SiW12O40}] (bipy = bipyridyl) (1) and pale yellow [Mn(2,2'-bipy)(3)](2)[alpha-SiW12O40] (2) have been synthesized hydrothermally and characterized by IR spectroscopy and single crystal X-ray structure analysis. In 1, the [alpha-SiW12O40](4-) ion acts as a bridge between the two [{Cu(2,2'-bipy)(2)](2+) moieties via coordination through the terminal oxygen atoms, while in 2, the [Mn(2,2'-bipy)(3)](2+) ion balances the charge on the polyoxo anion without forming any covalent bond. To the best of our knowledge, this is the first example of transition metal-mediated transformation of [alpha-SiW9O34](10-) to [alpha-SiW12O40](4-).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the design considerations of surface aeration tanks on two basic issues of oxygen transfer coefficient and power requirements for the surface aeration system. Earlier developed simulation equations for simulating the oxygen transfer coefficient with theoretical power per unit volume have been verified by conducting experiments in geometrically similar but differently shaped and sized square tanks, rectangular tanks of length to width ratio (L/W) of 1.5 and 2 as well as circular tanks. Based on the experimental investigations, new simulation criteria to simulate actual power per unit volume have been proposed. Based on such design considerations, it has been demonstrated that it is economical (in terms of energy saving) to use smaller tanks rather than using a bigger tank to aerate the same volume of water for any shape of tanks. Among the various shapes studied, it has been found that circular tanks are more energy efficient than any other shape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ternary copper(II) complexes [Cu(L-trp)(B)(H2O)](NO3) ( 1–3) and [Cu(L-phe)(B)(H2O)](NO3) ( 4–6) of L-tryptophan (L-trp) and L-phenylalanine (L-phe) having phenanthroline bases (B), viz. 1,10-phenanthroline (phen, 1 and 4), dipyrido[3,2-d:2,3-f]quinoxaline (dpq, 2 and 5) and dipyrido[3,2-a:2,3-c]phenazine (dppz, 3 and 6), were prepared and characterized by physico-chemical techniques. Complexes 3 and 6 were structurally characterized by X-ray crystallography and show the presence of a square pyramidal (4 + 1) CuN3O2 coordination geometry in which the N,O-donor amino acid (L-trp or L-phe) and N,N-donor phenanthroline base bind at the equatorial plane with an aqua ligand coordinated at the elongated axial site. Complex 3 shows significant distortion from the square pyramidal geometry and a strong intramolecular – stacking interaction between the pendant indole ring of L-trp and the planar dppz aromatic moiety. All the complexes display good binding propensity to the calf thymus DNA giving an order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding constant (Kb) values are in the range of 2.1 × 104–1.1 × 106 mol-1 with the binding site size (s) values of 0.17–0.63. The phen and dpq complexes are minor groove binders while the dppz analogues bind at the DNA major groove. Theoretical DNA docking studies on 2 and 3 show the close proximity of two photosensitizers, viz. the indole moiety of L-trp and the quinoxaline/phenazine of the dpq/dppz bases, to the complementary DNA strands. Complexes 2 and 3 show oxidative DNA double strand breaks (dsb) of supercoiled (SC) DNA forming a significant quantity of linear DNA along with the nicked circular (NC) form on photoexposure to UV-A light of 365 nm and red light of 647.1 nm (Ar–Kr laser). Complexes 1, 5 and 6 show only single strand breaks (ssb) forming NC DNA. The red light induced DNA cleavage involves metal-assisted photosensitization of L-trp and dpq/dppz base resulting in the formation of a reactive singlet oxygen (1O2) species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250K, in addition to the well-investigated dielectric relaxation close to 100K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An aeration process in ail activated sludge plant is a continuous-flow system. In this system, there is a steady input flow (flow from the primary clarifier or settling tank with some part from the secondary clarifier or secondary settling tank) and output flow connection to the secondary clarifier or settling tank. The experimental and numerical results obtained through batch systems can not be relied on and applied for the designing of a continuous aeration tank. In order to scale up laboratory results for field application, it is imperative to know the geometric parameters of a continuous system. Geometric parameters have a greater influence on the mass transfer process of surface aeration systems. The present work establishes the optimal geometric configuration of a continuous-flow surface aeration system. It is found that the maintenance of these optimal geometric parameters systems result in maximum aeration efficiency. By maintaining the obtained optimal geometric parameters, further experiments are conducted in continuous-flow surface aerators with three different sizes in order to develop design curves correlating the oxygen transfer coefficient and power number with the rotor speed. The design methodology to implement the presently developed optimal geometric parameters and correlation equations for field application is discussed.